Ortiz-Medina, Raúl Arturo | Instituto Tecnológico De Aguascalientes |
Villalobos Piña, Francisco Javier | Instituto Tecnológico De Aguascalientes |
Alvarez-Salas, Ricardo | Universidad Autónoma De San Luis Potosí |
López, Irvin | Universidad Autónoma Metropolitana |
Jiménez Mondragón, Víctor Manuel | Universidad Autónoma Metropolitana |
Resumen: Este trabajo aborda la detección de fallas de cortocircuito entre espiras del estator de un generador de inducción doblemente alimentado (DFIG, por sus siglas en inglés) utilizado para aplicaciones de aerogeneración. El modelo de un DFIG de 3.5 kW se simuló a través del método del elemento finito (MEF) en estado normal y con falla. Se analizaron las corrientes de estator en estado estable dadas por el modelo para el caso sin falla. A continuación el modelo se modificó para reproducir un segundo estado con falla de cortocircuito entre espiras, para el que igualmente se analizaron las corrientes del estator. Para la detección de fallas se utilizaron las Transformada Rápida de Fourier (FFT, por sus siglas en inglés) y Transformada Discreta Wavelet (DWT, por sus siglas en inglés) aplicadas al vector de Park de las corrientes del estator.
¿Cómo citar?
Raúl A. Ortiz-Medina, Francisco J. Villalobos-Piña, Ricardo Alvarez-Salas, Irvin López-García & Victor M. Jiménez-Mondragón. Detección de Fallas en Un DFIG Empleando el Método del Elemento Finito (I). Memorias del Congreso Nacional de Control Automático, pp. 25-30, 2019.
Palabras clave
Detección y Aislamiento de Fallas, Sistemas Electromecánicos, Sistemas Eléctricos de Potencia
Referencias
- Abad, G., L´opez, J., Rodriguez, M., Marroyo, L., and Iwanski, G. (2011). Doubly fed induction machine: Modeling and control for wind energy generation. WileyIEEE Press, USA.
- ALTAIR, F. (2016). Induction motor tutorial 2D technical example. Altair engineering Inc., France.
- Artigao, E., Mart´ın, S., Honrubia, A., and Gomez, E. (2018). Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Applied Energy, 228, 1569–1583.
- Bastos, J.P.A. and Sadowski, N. (2003). Electromagnetic modelling by finite element methods. CRC Press, USA.
- CEDRAT (2009). User guide Flux 11.2. CEDRAT, France.
- Cheng, P., Li, F.Y., and Li, J.H. (2013). Design and simulation analysis of doubly fed induction generator wind turbines. Applied mechanics and materials, 260, 142–147.
- Craciunescu, A., Ciumbulea, G., and Media, M. (2012). Phase-modulus diagram of instantaneous current’s space phasor as diagnosis tool of induction motor’s stator windings. In International conference of renewable energies and power quality, 108–111. España.
- Fried, L., Shukla, S., and Sawyer, S. (2017). Chapter 26 – growth trends and the future of wind energy. In T.M. Letcher (ed.), Wind Energy Engineering, 559 – 586. Academic Press.
- Gao, R.X. and Yan, R. (2011). Wavelets, theory and applications for manufacturing. Springer, USA.
- Grainger, J. and Stevenson, J.W. (1996). Análisis de sistemas eléctricos de potencia. Mc Graw Hill, USA.
- Gritli, Y., Bellini, A., Rossi, C., Casadei, D., Filippetti, F., and Capolino, G. (2017). Condition monitoring of mechanical faults in induction machines from electrical signatures: Review of different techniques. In 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 77–84.
- GWEC (2018). Global Wind Energy Council. Global Report: Annual Market, Brussels.
- Ko, Y.., Lee, K.., Lee, D.., and Kim, J.. (2012). Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine. IET Power Electronics, 5(7), 1058–1067.
- Maldonado-Ruelas, V.A., Villalobos -Piña, F.J., Sosa Serna, G.A., Alvarez-Salas, R., Pazos-Flores, F., and Alvarez-Salas, J.A. (2016). In-wheel brushless dc motor test-bed for control and fault detection. In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1–5.
- Milanez, D.L. and Emanuel, A.E. (2003). The instantaneous-space-phasor: A powerful diagnosis tool. IEEE Transactions on Instrumentation and Measument, 52(1), 143–148.
- Ngamroo, I. (2017). Review of dfig wind turbine impact on power system dynamic performances. IEEJ Transactions on electrical and electronic engineering, 12, 301–311.
- Peeters, C., Guillaume, P., and Helsen, J. (2018). Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy. Renewable Energy, 116, 74 – 87.
- Pinar, J., P. García, F., Tobias, A., and Papaelias, M. (2013). Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews, 23, 463–472.
- Qiao, W. and Lu, D. (2015). A survey on wind turbine condition monitoring and fault diagnosis—part i: Components and subsystems. IEEE Transactions on Industrial Electronics, 62, 6536–6545.
- Shahriar, M.R., Borghesani, P., Ledwich, G., and Tan, A.C. (2018). Performance analysis of electrical signature analysis-based diagnostics using an electromechanical model of wind turbine. Renewable Energy, 116, 15 – 41. Real-time monitoring, prognosis and resilient control for wind energy systems.
- Shipurkar, U., Ma, K., Polinder, H., Blaabjerg, F., and Ferreira, J. (2015). A review of failure mechanisms in wind turbine generator systems. 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 1, 1–10.
- Singh, G., Anil Kumar, T., and Naikan, V. (2016). Induction motor inter turn fault detection using infrared thermographic analysis. Infrared Physics & Technology, 77, 277–282.
- Sun, L., Xu, B., Du, W., and Wang, H. (2016). Model development and small-signal stability analysis of dfig with stator winding inter-turn fault. IET Renewable Power Generation, 11-3, 338–346.
- Walker, J.S. (2008). A primer on Wavelets and their specific applications. Chapman & Hall/CRC, USA.
- Weeks, M. (2007). Digital signal processing using MATLAB and wavelets. Infinity Science Press LLC, USA.