Sánchez-Morales, Mariano | Universidad Nacional Autónoma De México |
De La Guerra, Alejandra | Universidad Nacional Autónoma De México |
Resumen: This article presents the design, construction and start-up of an experimental platform for the evaluation of schemes for pedaling assistance of electric bicycles. The experimental platform represents a front-wheel drive bicycle. The motor used is a direct current motor (DC motor). The acquisition of the measured signals (angular position and current of the DC motor) and the generation of the PWM signals is carried out in the ARDUINO MEGA 2560. The signals monitoring and control programming was done in MATLAB/Simulink. At this stage, a PI controller is used to regulate the DC motor speed to verify the correct platform operation.
¿Cómo citar?
Mariano Sánchez-Morales & Alejandra de la Guerra. Development of an Electric Bicycle Experimental Platform. Memorias del Congreso Nacional de Control Automático, pp. 103-108, 2021.
Palabras clave
DC motor, experimental platform design, SIMULINK, ARDUINO
Referencias
- Boylestad, R.L. and Nashelsky, L. (2003). Electrónica: teoría de circuitos y dispositivos electrónicos. PEARSON educación.
- Campa, G. (2015). Writing a Simulink Device Driver block: a step by step guide. The MathWorks, Inc.
- Cardone, M., Strano, S., and Terzo, M. (2016). Optimal power-assistance system for a new pedelec model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(17), 3012–3025.
- Dimitrov, V. (2018). Overview of the ways to design an electric bicycle. In 2018 IX National Conference with International Participation (ELECTRONICA), 1– 4. IEEE.
- Floyd, T.L. (2008). Dispositivos electrónicos. Pearson Educación.
- González, G., Aligia, D., Pezzani, C., and De Angelo, C. (2020). Observador del par ejercido por el ciclista en bicicletas eléctricas con asistencia al pedaleo. Revista Iberoamericana de Automática e Informática industrial, 17(4), 380–389.
- Guardiola Víllora, A.P. (2012). Diseño y cálculo de uniones con tornillos no pretensados. Universitat Politécnica de Valencia.
- Hung, N.B. and Lim, O. (2020). A review of history, development, design and research of electric bicycles. Applied Energy, 260, 114323.
- Isermann, R. (2007). Mechatronic systems: fundamentals. Springer Science & Business Media.
- Lastra, M.S., Pérez, C.G., and Murata, M. (2016). Bicicletas para la ciudad: una propuesta metodológica para el diagnóstico y la planeación de infraestructura ciclista. Universidad Nacional Autónoma de México.
- Morchin, W.C. and Oman, H. (2006). Electric bicycles: a guide to design and use, volume 8. Electric Bicycle Manual.
- Muetze, A. and Tan, Y.C. (2007). Electric bicycles-a performance evaluation. IEEE Industry Applications Magazine, 13(4), 12–21.
- Saleem, A., Tutunji, T., and Al-Sharif, L. (2011). Mechatronic system design course for undergraduate programmes. European Journal of Engineering Education, 36(4), 341–356.
- Shigley, J.E., Mischke, C.R., Bocanegra, F.P., and Correa, C.O. (1990). Diseño en ingeniería mecánica. McGrawHill México.
- Sommer (2018). Catalogo tornillos. Casa Sommer.