Mera, Manuel | Instituto Politécnico Nacional |
Ríos, Héctor | TECNM/Instituto Tecnológico De La Laguna |
Resumen: En este trabajo se propone un algoritmo de seguimiento robusto para el modelo cinemático de robots móviles tipo uniciclo. La estrategia de control propuesta se basa en el conocido enfoque de modos deslizantes de primer orden, con una modificación que reduce el efecto de chattering. Esta estrategia toma en cuenta el modelo cinemático afectado por perturbaciones aditivas y considera cualquier trayectoria suave admisible, respecto a la restricción no holónoma. El control resultante es una función discontinua y con conmutación que asegura convergencia global y asintótica del error de seguimiento al origen. El resultado se ilustra por medio de simulaciones y una comparación con la implementación convencional de modos deslizantes.
¿Cómo citar?
Manuel Mera & Héctor Ríos. Diseño de un Controlador Robusto para Seguimiento de Trayectorias Aplicado a un Robot Móvil Tipo Uniciclo (I). Memorias del Congreso Nacional de Control Automático, pp. 225-230, 2019.
Palabras clave
Control discontinuo (modos deslizantes), Control robusto, Robótica y Mecatrónica
Referencias
- Ackermann, J., Guldner, J., Sienel, W., Steinhauser, R., and Utkin, V.I. (1995). Linear and nonlinear controller design for robust automatic steering. IEEE Transactions on Control Systems Technology, 3(1), 132–143.
- Amer, A.F., Sallam, E.A., and Sultan, I.A. (2016). Adaptive sliding-mode dynamic controller for nonholonomic mobile robots. In 2016 12th International Computer Engineering Conference (ICENCO), 230–235. IEEE.
- Bessas, A., Benalia, A., and Boudjema, F. (2016). Integral sliding mode control for trajectory tracking of wheeled mobile robot in presence of uncertainties. Journal of Control Science and Engineering, 2016.
- Bloch, A. and Drakunov, S. (1994). Stabilization of a nonholonomic system via sliding modes. In Proceedings of 1994 33rd IEEE Conference on Decision and Control, volume 3, 2961–2963. IEEE.
- Bloch, A.M. (2003). Nonholonomic mechanics. In Nonholonomic mechanics and control, 207–276. Springer.
- Brockett, R.W. et al. (1983). Asymptotic stability and feedback stabilization. Differential geometric control theory, 27(1), 181–191.
- De Marina, H.G., Kapitanyuk, Y.A., Bronz, M., Hattenberger, G., and Cao, M. (2017). Guidance algorithm for smooth trajectory tracking of a fixed wing uav flying in wind flows. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 5740–5745. IEEE.
- Fierro, R. and Lewis, F.L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on neural networks, 9(4), 589–600.
- Goswami, N.K. and Padhy, P.K. (2018). Sliding mode controller design for trajectory tracking of a non-holonomic mobile robot with disturbance. Computers & Electrical Engineering, 72, 307–323.
- Guerra, M., Efimov, D., Zheng, G., and Perruquetti, W. (2017). Finite-time obstacle avoidance for unicycle-like robot subject to additive input disturbances. Autonomous Robots, 41(1), 19–30.
- Hespanha, J.P. and Morse, A.S. (1999). Stabilization of nonholonomic integrators via logic-based switching. Automatica, 35(3), 385–393.
- Kapitanyuk, Y.A., Proskurnikov, A.V., and Cao, M. (2018). A guiding vector-field algorithm for pathfollowing control of nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, 26(4), 1372–1385.
- Kurfess, T.R. (2004). Robotics and automation handbook. CRC press.
- Laumond, J.P. et al. (1998). Robot motion planning and control, volume 229. Springer.
- Murray, R.M. and Sastry, S.S. (1993). Nonholonomic motion planning: Steering using sinusoids. IEEE transactions on Automatic Control, 38(5), 700–716.
- M’Closkey, R.T. and Murray, R.M. (1994). Extending exponential stabilizers for nonholonomic systems from kinematic controllers to dynamic controllers. IFAC Proceedings Volumes, 27(14), 243–248.
- Nakamura, H., Yamashita, Y., and Nishitani, H. (2002). Stabilization of nonholonomic systems using homoge neous finite-time control technique. IFAC Proceedings Volumes, 35(1), 181–186.
- Nakamura, Y. and Mukherjee, R. (1990). Nonholonomic path planning of space robots via bi-directional approach. In Proceedings., IEEE International Conference on Robotics and Automation, 1764–1769. IEEE.
- Peymani, E. and Fossen, T.I. (2015). Path following of underwater robots using lagrange multipliers. Robotics and Autonomous Systems, 67, 44–52.
- Samson, C. (1992). Path following and time-varying feedback stabilization of a wheeled mobile robot. In Proceedings of the international conference on advanced robotics and computer vision, volume 13, 1–1.
- Shtessel, Y., Edwards, C., Fridman, L., and Levant, A. (2014). Sliding mode control and observation. Springer. Siciliano, B. and Khatib, O. (2016). Springer handbook of robotics. Springer.
- Yang, J.M. and Kim, J.H. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on robotics and automation, 15(3), 578–587.
- Ye, J. (2008). Adaptive control of nonlinear pid-based analog neural networks for a nonholonomic mobile robot. Neurocomputing, 71(7-9), 1561–1565.
- Zhai, J.y. and Song, Z.b. (2018). Adaptive sliding mode trajectory tracking control for wheeled mobile robots. International Journal of Control, 1–8.