J.I. Aguilar-Pérez | CINVESTAV |
M. Velasco-Villa | CINVESTAV |
R. Castro-Linares | CINVESTAV |
Jaime González-Sierra | Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo |
https://doi.org/10.58571/CNCA.AMCA.2022.060
Resumen: The development of a tracking control using a backstepping method for a wheeled mobile robot under the effect of skidding and slipping is presented in this paper. The dynamic model of a differential drive mobile robot with skidding and slipping effects is used to solve the trajectory tracking problem. The proposed control scheme is based on a backstepping strategy and under the assumption of knowledge of the disturbance. Simulations results are showed, to prove the effectiveness of the proposed method together with a comparison with similar strategies already presented in the literature.

¿Cómo citar?
Aguilar-Pérez, J., Velasco-Villa, M., Castro-Linares, R. & González-Sierra, J. Dynamic Modeling and Backstepping Control of a Wheeled Mobile Robot With Skidding and Slipping effects. Memorias del Congreso Nacional de Control Automático, pp. 250-255, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.060
Palabras clave
Control de Sistemas No Lineales; Control Robusto; Modelado e Identificación de Sistemas
Referencias
- Jiang, Z.P. y Nijmeijer, H. (1997). Tracking control of mobile robots: A case study in backstepping In: Automatica,1997 ; Vol. 33, No. 7. pp. 1393-1399.
- Tian, N. Sidek y N. Sarkar (2009). Modeling and Control of a Nonholonomic Wheeled Mobile Robot with Wheel Slip Dynamics IEEE Symposium on Computational Intelligence in Control and Automation,2009, pp. 7-14, doi: 10.1109/CICA.2009.4982776.
- J. Sordalen y C. Canudas de Wit (1993). Exponential control law for a mobile robot: Extension to Path Following IEEE Transactions on Robotics and Automation, vol. 9, no. 6, pp. 837-842, Dec. 1993, doi:10.1109/70.265927.
- H. Kim, J. H. Oh (1999) Tracking control of a twowheeled mobile robot using input–output linearization Control Engineering Practice, vol. 7, pp. 369-373, https://doi.org/10.1016/S0967-0661(98)00184-1.
- Manuel Mera a, Héctor Ríos b,c, Edgar A. Martínez (2020) A sliding-mode based controller for trajectory tracking of perturbed Unicycle Mobile Robots Elsevier Control Engineering Practice, vol 102, https://doi.org/10.1016/j.conengprac.2020.104548
- Boukens, M., Boukabou, A., y Chadli, M. (2017). Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robotics & Autonomous Systems, vol 92, pp. 30-40, https://doi.org/10.1016/j.robot.2017.03.001.
- Huang, D., Zhai, J., Ai, W., y Fei, S. (2016). Disturbance observer-based robust control for trajectory tracking of wheeled mobile robots. Neurocomputing, vol 198, pp. 74-79, https://doi.org/10.1016/j.neucom.2015.11.099,
- Wang, D., y Low, C. (2008). Modeling and análisis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Transactions on Robotics, vol 24, pp. 676–697, June 2008, doi: 10.1109/TRO.2008.921563.
- Cui, M., Huang, R., Liu, H., Liu, X., y Sun, D. (2014). Adaptative tracking control of wheeled mobile robots with unknown longitudinal and lateral slipping parameters. Nonlinear Dynamics, vol 78, pp. 1811–1826, https://doi.org/10.1007/s11071-014-1549-0
- Utkin, V., Guldner, J., y Shi, J. (2009) Sliding mode control in electromechanical systems CRC Press. https://doi.org/10.1201/9781420065619
- Byrnes, C.I., Isidori, A., Willems, J.C. (1991) Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1228-1240, Nov. 1991, doi: 10.1109/9.100932.
- Gao, Z. (2006) Active disturbance rejection control: a paradigm shift in feedback control system design. En American Control Conference, 2006, pp. 7 pp.-, doi:10.1109/ACC.2006.1656579.
- Ghobadi, S.F. Dehkordi (2019). Dynamic modeling and sliding mode control of a wheeled mobile robot assuming lateral and longitudinal slip of wheels. 2019 7th International Conference on Robotics and Mechatronics (ICRoM), pp. 150-155, doi: 10.1109/ICRoM48714.2019.9071913.