Rodriguez-Cortes, Hugo | Instituto Tecnológico Autónomo de México |
Ortega, Romeo | Instituto Tecnológico Autónomo de México |
Romero, Jose-Guadalupe | Instituto Tecnológico Autónomo de México |
https://doi.org/10.58571/CNCA.AMCA.2024.038
Resumen: In this paper we present a comparative numerical simulation study of three dynamic regressor extension and mixing estimators applied to the quadrotor system. Our main objective is to compare the transient performance of these three parameter estimators a topic that plays a major role in parameter estimation tasks. Our study goes beyond verifying theoretically validated (asymptotic) properties. We delve into aspects not previously explored, such as sensitivity to tuning parameters, focusing specifically on a quadrotor dynamic model. The ultimate goal of this study is to provide useful design guidelines for the unmanned aerial vehicles community interested in utilizing these estimators.
¿Cómo citar?
Rodriguez Cortes, H., Ortega, R. & Romero, J.G. (2024). Dynamic Regressor Extension and Mixing Parameter Estimators-A Comparative Simulation Study of the Quadrotor System. Memorias del Congreso Nacional de Control Automático 2024, pp. 220-225. https://doi.org/10.58571/CNCA.AMCA.2024.038
Palabras clave
System identification, parameter estimators, quadrotor systems
Referencias
- S. Aranovskiy, A. Bobtsov, R. Ortega and A. Pyrkin, Performance enhancement of parameter estimators via dynamic regressor extension and mixing, IEEE Trans. Automatic Control, vol. 62, pp. 3546-3550, 2017.
- S. Aranovskiy, A. Belov, R. Ortega, N. Barabanov and A, Bobtsov, Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing. International Journal of Adaptive Control and Signal Processing, vol. 33, no. 6, pp. 1016-1030, 2019.
- A. Bobtsov, B. Yi, R. Ortega and A. Astolfi, Generation of new exciting regressors for consistent on-line estimation of unknown constant parameters, IEEE Trans. Automatic Control, vol. 67, no. 9, pp.4746-4753, 2022.
- I. Cortés-Benito, Y. E. Tlatelpa-Osorio, M. Martínez-Ramírez, J. G. Romero and H. Rodríguez-Cortés, Experimental Quadrotor Physical Parameters Estimation, 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland, pp. 1356-1362, doi: 10.1109/ICUAS57906.2023.10156332, 2023.
- Ph. de Larminat, On the stabilizability condition in indirect adaptive control, Automatica, vol. 20, no, 6, pp. 793-795, 1984.
- M. Dhaybi and N. Daher, Accurate real-time estimation of the inertia tensor of package delivery quadrotors, in 2020 American Control Conference (ACC), pp. 15201525, 2020
- A. Gómez-Casasola and H. Rodríguez-Cortés, Scale Factor Estimation for Quadrotor Monocular-Vision Positioning Algorithms. Sensors, 22, 8048. https://doi.org/10.3390/s22208048, 2022.
- K. Guo and Y. Pan, Composite adaptation and learning for robot control: A survey, IFAC Annual Reviews in Control, Vol. 55, pp. 279-290, 2023.
- M. A. Kakanov, S. I. Tomashevich, V. S. Gromov, O. I. Borisov, F. B. Gromova, and A. A. Pyrkin, Parameter estimation of quadrotor model, in 2020 International Conference Nonlinearity, Information and Robotics (NIR), pp. 15, 2020.
- M. Korotina, J. G. Romero, S. Aranovskiy, A. Bobtsov and R. Ortega, A new on-line exponential parameter estimator without persistent excitation, Systems and Control Letters, vol. 159, 105079, 2022.
- G. Kreisselmeier, Adaptive observers with exponential rate of convergence, IEEE Trans. Automatic Control, vol. 22, no. 1, pp. 2-8, 1977.
- G. Kreisselmeier and G. Rietze-Augst, Richness and excitation on an interval with application to continuous-time adaptive control, IEEE Trans. Automatic Control, vol. 35, no. 2, pp. 165-171, 1990.
- T. Lee, Robust adaptive attitude tracking on SO(3) with an application to a quadrotor UAV, IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 19241930, September 2013.
- R.C. Leishman, J.C Macdonald, R.W; Beard and T.W. McLain, Quadrotors and Accelerometers: State Estimation with an Improved 392 Dynamic Model. IEEE Control Systems Magazine, 34, 2841. doi:10.1109/MCS.2013.2287362, 2014.
- W. Liu, X. Huo, J. Liu, and L. Wang, Parameter identification for a quadrotor helicopter using multivariable extremum seeking algorithm, International Journal of Control, Automation and Systems, vol. 16, no. 4, pp. 195119611, 2018.
- R. Munguía, S. Urzua, and A. Grau, EKF-based parameter identification of multi-rotor unmanned aerial vehicles-models, Sensors, vol. 19, no. 19, 2019.
- R. Ortega, V. Nikiforov and D. Gerasimov, On modified parameter estimators for identification and adaptive control: a unified framework and some new schemes, IFAC Annual Reviews in Control, vol. 50, pp. 278-293, 2020.
- R. Ortega, S. Aranovskiy, A. Pyrkin, A Astolfi and A. Bobtsov, New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases, IEEE Trans. Automatic Control, vol. 66, no. 5, pp. 2265-2272, 2021.
- R. Ortega, A. Bobtsov, N. Nikolayev, J. Schiffer and D. Dochain, Generalized parameter estimation-based observers: application to power systems and chemical-biological reactors, Automatica, vol. 129, 109635, 2021.
- R. Ortega, J. G. Romero and S. Aranovskiy, A new least squares parameter estimator for nonlinear regression equations with relaxed excitation conditions and forgetting factor, Systems and Control Letters, vol. 169, no. 105377, 2022.
- Y. Pan, T. Shi and R. Ortega, Comparative analysis of parameter convergence for several least-squares estimation schemes, IEEE Trans. Automatic Control, (DOI:10.1109/TAC.2023.3326054), 2023.
- J. Romero, R Ortega and A. Bobtsov, Parameter estimation and adaptive control of Euler-Lagrange systems using the power balance equation parameterisation. International Journal of Control, 96(2), pp. 475-487, doi.org/10.1080/00207179.2021.2002935, 2021.
- S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness, Prentice-Hall, New Jersey, 1989.
- J.-J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, USA, 1991.
- G. Tao, Adaptive Control Design and Analysis, vol. 37, John Wiley & Sons, New Jersey, 2003.
- L. Wang, R. Ortega, A. Bobtsov, J. G. Romero and B. Yi, Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control, Int. J. of Control, (DOI:10.1080/00207179.2023.2246595), 2023.
- S. Yang, L. Xi, J. Hao, and W. Wang, Aerodynamic-parameter identification and attitude control of quad-rotor model with cifer and adaptive ladrc, Chinese Journal of Mechanical Engineering, vol. 34, no. 1, pp. 110, 2021.