González, Andrés | Universidad Nacional Autónoma de Mexico |
Ovalle, Luis | Universidad Nacional Autónoma de Mexico |
Fridman, Leonid M. | Universidad Nacional Autónoma de Mexico |
https://doi.org/10.58571/CNCA.AMCA.2023.012
Resumen: The effect of deterministic measurement noise on barrier function-based adaptive sliding mode controllers (BFASMC) is analyzed. For general bounded deterministic noise signals, it is impossible to select the controller parameters to track some perturbation with unknown bound. Nonetheless, if the assumption of continuity of the noise is added, the tracking of such a perturbation is possible whenever the barrier function width depends on the bound of the noise. If Lipschitz continuity of the noise is assumed, then the barrier function width can be chosen arbitrarily.

¿Cómo citar?
González, Andrés; Ovalle, Luis; Fridman, Leonid M. Effects of Deterministic Measurement Noise on Barrier Function-Based Adaptive Sliding-Mode Control. Memorias del Congreso Nacional de Control Automático, pp. 92-96, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.012
Palabras clave
Control Discontinuo (modos deslizantes); Control Robusto; Control de Sistemas No Lineales
Referencias
- Alattas, K.A., Mofid, O., Alanazi, A.K., Abo-Dief, H.M., Bartoszewicz, A., Bakouri, M., and Mobayen, S. (2022).
- Barrier function adaptive nonsingular terminal sliding mode control approach for quad-rotor unmanned aerial vehicles. Sensors, 22(3), 909.
- Cruz-Ancona, C.D., Fridman, L., Obeid, H., Laghrouche, S., and P´erez-Pinacho, C.A. (2023). A uniform reaching phase strategy in adaptive sliding mode control. Automatica, 150, 110854.
- Khalil, H. (2002). Nonlinear Systems. Pearson Education. Prentice Hall.
- Ma, H., Liu, W., Xiong, Z., Li, Y., Liu, Z., and Sun, Y. (2022). Predefined-time barrier function adaptive sliding-mode control and its application to piezoelectric actuators. IEEE Transactions on Industrial Informatics, 18(12), 8682-8691.
- Mobayen, S., Alattas, K.A., and Assawinchaichote, W. (2021). Adaptive continuous barrier function terminal sliding mode control technique for disturbed robotic manipulator. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(10), 4403-4412.
- Mousavi, A., Markazi, A.H., and Ferrara, A. (2023). A barrier function-based second order sliding mode control with optimal reaching for full state and input constrained nonlinear systems. IEEE Transactions on Automatic Control.
- Obeid, H., Fridman, L.M., Laghrouche, S., and Harmouche, M. (2018). Barrier function-based adaptive sliding mode control. Automatica, 93, 540-544.
- Rodrigues, V.H.P., Hsu, L., Oliveira, T.R., and Fridman, L. (2022). Adaptive sliding mode control with guaranteed performance based on monitoring and barrier functions. International Journal of Adaptive Control and Signal Processing, 36(6), 1252-1271.
- Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., and Man, Z. (2021). Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Transactions on Industrial Informatics, 17(11), 7479-7488.
- Shtessel, Y., Fridman, L., and Plestan, F. (2016). Adaptive sliding mode control and observation. International Journal of Control, 89(9), 1743-1746.
- Yan, Y., Zhao, X., Yu, S., and Wang, C. (2021). Barrier function-based adaptive neural network sliding mode control of autonomous surface vehicles. Ocean Engineering, 238, 109684.