Rodriguez Licea, Martin Antonio | CONACYT-Inst. Tecnológico De Celaya |
Perez Pinal, Francisco J. | Inst. Tecnológico De Celaya |
Vazquez Rodriguez, Edgar Armando | Inst. Tecnológico De Celaya |
Resumen: Aunque existen numerosos esfuerzos para electrificar y diversificar vehículos pequeños, la seguridad activa en motocicletas y triciclos (también conocidos como autorickshaw, tuk-tuk, mototaxi, etc.) ha sido relegada hasta hace algunos años. Por ejemplo, los triciclos eléctricos (e incluso los de combustión interna) que se comercializan hoy en día no cuentan con un sistema de seguridad activo que prevenga o mitigue el riesgo de vuelco, a pesar de lo propensos que son a tal situación. La preocupación por el aumento en su comercialización es latente y, lamentablemente, hay muy pocos estudios científicos relacionados. En este artículo, se presenta la obtención y validación de un nuevo índice de vuelco para triciclos y se muestra su efectividad para predecir y detectar el riesgo incluso estáticamente mediante una cantidad simple. Además, se presenta un controlador para la mitigación del riesgo de vuelco que consiste en realizar un frenado diferencial con las ruedas traseras.
¿Cómo citar?
Edgar A. Vazquez-Rodríguez, Martin A. Rodríguez-Licea & Francisco J. Perez-Pinal. El Riesgo de Vuelco en Triciclos: Estimación y Mitigación mediante Frenado Trasero Diferencial. Memorias del Congreso Nacional de Control Automático, pp. 78-83, 2018.
Palabras clave
Volcadura, triciclo, frenado diferencial, índice de riesgo
Referencias
- Akar, M. and Dere, A.D. (2014). A switching rollover controller coupled with closed-loop adaptive vehicle parameter identification. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1579–1585.
- Austin, E., Christopher, A.S., Peter, O., Saturday, E.W., et al. (2015). Determination of center of gravity and dynamic stability evaluation of a cargo-type tricycle. American journal of mechanical engineering, 3(1), 26– 31.
- Barrett, E., Thayer, B., Studarus, K., and Pal, S. (2017). The varied impacts of energy storage and photovoltaics on fossil fuel emissions. In 2017 IEEE Power Energy Society General Meeting, 1–1.
- Chang, W.J., Lee, K.H., Ha, J.I., and Nam, K.T. (2018). Hydrogen production via water electrolysis: The benefits of a solar cell-powered process. IEEE Electrification Magazine, 6(1), 19–25.
- de Luise, D.L., Bel, W., Mansilla, D., Lobatos, A., Blanc, L., and la Rosa, R.M. (2016). Prediccion de riesgo basado en tiempo y patrones gps. In 2016 IEEE Biennial Congress of Argentina (ARGENCON), 1–7.
- Habib, S., Khan, M.M., Abbas, F., Sang, L., Shahid, M.U., and Tang, H. (2018). A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access, 6, 13866–13890.
- Imine, H., Benallegue, A., Madani, T., and Srairi, S. (2014). Rollover risk prediction of heavy vehicle using high-order sliding-mode observer: Experimental results. IEEE Transactions on Vehicular Technology, 63(6), 2533–2543.
- Imine, H. and Djemaï, M. (2016). Switched control for reducing impact of vertical forces on road and heavy-vehicle rollover avoidance. IEEE Transactions on Vehicular Technology, 65(6), 4044–4052.
- Kehe, W. and Peng, Y. (2017). Research on energy substitution terminal energy application based on critic algorithm. In 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA), 414–416.
- Kiencke, U. and Nielsen, L. (2000). Automotive control systems: for engine, driveline, and vehicle. IOP Publishing.
- Kim, J. and Kim, S. (2018). Obstacles to the success of fuel-cell electric vehicles: Are they truly impossible to overcome? IEEE Electrification Magazine, 6(1), 48– 54.
- Li, L., Lu, Y., Wang, R., and Chen, J. (2017). A threedimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with mpc. IEEE Transactions on Industrial Electronics, 64(4), 3389–3401.
- Li, W.J., Tan, X., Sun, B., and Tsang, D.H.K. (2018). Optimal power dispatch of a centralised electric vehicle battery charging station with renewables. IET Communications, 12(5), 579–585.
- Pacejka, H. (2005). Tire and vehicle dynamics. Elsevier.
- Pandey, A., Jha, S., and Chakravarty, D. (2017). Modeling and control of an autonomous three wheeled mobile robot with front steer. In 2017 First IEEE International Conference on Robotic Computing (IRC), 136–142.
- Parida, N.C., Raha, S., and Ramani, A. (2014). Rolloverpreventive force synthesis at active suspensions in a vehicle performing a severe maneuver with wheels lifted off. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2583–2594.
- Pearson, J. (2002). Vehicle weights and dimension limits within the nafta partnership. Task Force on VW&D Policy, 27.
- Petroff, A. (2017). These countries want to ban gas and diesel cars. CNN Money, September 11.
- Ramoso, J.P.A. and Ramos, M.C. (2016). Comparative study of different fuzzy-neural configurations for autonomous vehicle following algorithm. In 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 413–418.
- Rath, J.J., Defoort, M., and Veluvolu, K.C. (2016). Rollover index estimation in the presence of sensor faults, unknown inputs, and uncertainties. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2949–2959.
- Reddy, B.M., Samuel, P., and Reddy, N.S.M. (2018). Government policies help promote clean transportation in india: Proton-exchange membrane fuel cells for vehicles. IEEE Electrification Magazine, 6(1), 26–36.
- Solmaz, S. (2011). Switched stable control design methodology applied to vehicle rollover prevention based on switched suspension settings. IET control theory & applications, 5(9), 1104–1112.
- Vincent, D.S., Karthikeyan, S., and Manokaran, E. (2011). Prevention of accidents in public transport corporation at madurai city. In 2011 International Conference on Management and Service Science, 1–5.