Leyva, Horacio | Universidad De Sonora |
Carrillo Navarro, Francisco Armando | Universidad De Sonora |
Resumen: Se estudia el problema de estabilidad y estabilización de sistemas lineales positivos, a través de las propiedades de las matrices Metzler y Hurwitz, se establece la invariancia de politopos convexos, de tal manera que es posible describir la geometría de la dinámica estable para dichos sistemas lineales positivos.
Estabilidad de Sistemas Lineales Positivos por Politopos Invariantes
Size: 159 KB
Total descargados hasta ahora
148 Downloads
¿Cómo citar?
Horacio Leyva C. & Francisco A. Carrillo N. Estabilidad de Sistemas Lineales Positivos por Politopos Invariantes. Memorias del Congreso Nacional de Control Automático, pp. 220-224, 2021.
Palabras clave
Positive Systems, Invariant Polytopes, Stability
Referencias
- L. Farina and S. Rinaldi. Positive Linear Systems, Theory and Applications. Pure and applied mathematics. John Wiley & Sons, 2000.
- Horacio Leyva, Francisco A. Carrillo, G. Quiroz, R. Femat, Robust stabilization of positive linear systems via sliding positive control, Journal of Process Control 41 (2016).
- H. Leyva, G. Quiroz, F.A. Carrillo, R. Femat, Rapid insulin stabilization via slidingmodes control for T1DM therapy, in: Proceedings of the Mexican Conferenceof Automatic Control, 2013.
- Leyva, Julio Sol´ıs and Rodolfo Su´arez, Global CLF Stabilization of Systems with control inputs constrained to a Hyperbox, SIAM J. CONTROL OPTIM., 2013, Vol. 51, No. 1, pp. 745–766.
- Leyva,H., Quiroz, G., Carrillo, F.A, and Femat, R. Insulin stabilisation in artificial pancreas: a positive control approach. IET Control Theory and Applications, pp. 970-978, (2018).
- Quiroz, R. Femat. On hyperglycemic glucose basal levels in type 1 diabetesmellitus from dynamic analysis. Math. Biosci. 210, 554–575. (2007).
- J.T. Sorensen. A physiologic model of glucose metabilism in man and its use te design and assess improved insulin therapies for diabeties. (Ph.D. thesis), MIT, USA. (1985).
- E.B. Castelan, J.C. Hennet, On Invariant Polyhedra Of Continuous-Time Linear Systems, IEEE Transactions on Automatic Control, Vol. 38, No.11, 1993, pp.1680-85.
- Bhatia and G. Szegö, “Stability Theory of Dynamical Systems,” Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- Anders Rantzer, Scalable control of positive systems, European Journal of Control 24 (2015) 72–80.
- Vahid Samadi Bokharaie. Stability Analysis of Positive Systems with Applications to Epidemiology. January 2012.
- Horváth, Z., Song, Y., and Terlaky, T. A Novel Unified Approach to Invariance for a Dynamical System. 2014. arXiv: 1405.5167 [math.DS].
- Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, SIAM, Philadelphia, NewYork, SanDiego, 1994.
- Zbigniew Bartosiewicz, Stability and stabilization of linear positive systems on time scales, Positivity (2020) 24:1361–1372, https://doi.org/10.1007/s11117-020-00735-z, (Published online: 28 January 2020).