Francsico-David Hernandez | Instituto Politécnico Nacional |
Domingo Cortes | Instituto Politécnico Nacional |
Maria-Margarita Vargas | Instituto Politécnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2022.050
Resumen: In recent years, control engineers has started to explore new control, optimization and tune paradigms. And they have found that Evolutionary Algorithms (EA) are good alternatives for traditional methods. Thanks to the power to explore high search-spaces with multicombinational problems and a lot of potential solutions. For this reason, in this work an Evolitive Algorithm is planned as a heuristic auto tunning algorithm for Sliding-Mode Controllers. Using an approach by Hyperbolic Tangents. In order to obtain easily implementable control laws with a desirable performance to linear and non-linear systems.
¿Cómo citar?
Hernandez, F., Cortes, D. & Vargas, M. Evolutionary Algorithm to Auto-tuning Hyperbolic Tangent Sliding-Mode Controllers. Memorias del Congreso Nacional de Control Automático, pp. 280-285, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.050
Palabras clave
Control de Sistemas No Lineales; Control Discontinuo (modos deslizantes); Control Inteligente
Referencias
- Alfaro-Cid, E., McGookin, E., Murray-Smith, D., and Fossen, T. (2008). Genetic programming for the automatic design of controllers for a surface ship. IEEE Transactions on Intelligent Transportation Systems, 9, 311Ű321. doi:10.1109/tits.2008.922932.
- Ding, Y., Liu, C., Lu, S., and Zhu, Z. (2018). Hyperbolic sliding mode trajectory tracking control of mobile robot. In Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018). Atlantis Press. doi:10.2991/eame-18.2018.49.
- Duriez, T., Parezanović, V., and Brunton, S.L. (2015). Feedback control of turbulent shear Ćows by genetic programming. doi:10.48550/ARXIV.1505.01022.
- Hui, T., Zeng, W., and Yu, T. (2020). Core power control of the ADS based on genetic algorithm tuning PID controller. Nuclear Engineering and Design, 370, 110835. doi:10.1016/j.nucengdes.2020.110835.
- Joseph, S.B., Dada, E.G., Abidemi, A., Oyewola, D.O., and Khammas, B.M. (2022). Metaheuristic algorithms for pid controller parameters tuning: review, approaches and open problems. Heliyon, 8, e09399. doi: https://doi.org/10.1016/j.heliyon.2022.e09399.
- Lazarevic, M.P., Batalov, S.A., and Latinovic, T.S. (2013). Fractional pid controller tuned by genetic algorithms for a three dofs robot system driven by dc motors. IFAC Proceedings Volumes, 46, 385Ű390. doi: 10.3182/20130204-3-fr-4032.00179.
- Prieto, P., Cazarez-Castro, N., Aguilar, L., and Espinoza, D. (2015). Estudio de metodos de reduccion de chattering en modos deslizantes.
- Samakwong, T. and Assawinchaichote, W. (2016). Pid controller design for electro-hydraulic servo valve system with genetic algorithm. Procedia Computer Science, 86, 91Ű94. doi:https://doi.org/10.1016/j.procs.2016.05.023.
- Slowik, A. and Kwasnicka, H. (2020). Evolutionary algorithms and their applications to engineering problems. Neural Computing and Applications, 12363Ű12379. doi:10.1007/s00521-020-04832-8.
- Utkin, V.I. and Chang, H.C. (2002). Sliding mode control on electro-mechanical systems. Mathematical Problems in Engineering, 8(4-5), 451Ű473. doi:10.1080/10241230306724.