| Luis Silva Franco | Universidad Nacional Autónoma de México |
| Leonid Fridman | Universidad Nacional Autónoma de México |
| Rafael Iriarte | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2025.024
Resumen: This paper presents an experimental validation of continuous high order sliding mode algorithms through the design of sliding surfaces using modified Ackermann formulas. The designed controllers are tested in a real experiment using a cart-pendulum setup. The order of accuracy of the chattering amplitude and gain adjustment is considered in experimental criteria.

Experimental Validation of Continuous HOSM Controllers in Inverted Cart-Pendulum
Size: 323 KB
Total descargados hasta ahora
21 Downloads
¿Cómo citar?
Silva Franco, L., Fridman, L. & Iriarte, R. (2025). Experimental Validation of Continuous HOSM Controllers in Inverted Cart-Pendulum. Memorias del Congreso Nacional de Control Automático 2025, pp. 138-143. https://doi.org/10.58571/CNCA.AMCA.2025.024
Palabras clave
Sliding Mode Control, Robust Control, Cart-Pendulum.
Referencias
- Anaya, G.O. and Fridman, L. (2023). Implementation of continuous hosm controllers in reaction wheel pendulum. In Memorias del 2023 Congreso Nacional de Control Automático, 97–102.
- Castillo, I., Castaños, F., Fridman, L., Barbot, J., and Plestan, F. (2016). Sliding surface design for higherorder sliding modes. Recent Trends in Sliding Mode Control, IET, 29–56.
- Fridman, L., Moreno, J.A., Bandyopadhyay, B., Kamal, S., and Chalanga, A. (2015). Continuous nested algorithms: The fifth generation of sliding mode controllers. Recent advances in sliding modes: From control to intelligent mechatronics, 5–35.
- Gutiérrez-Oribio, D., Mercado-Uribe, A., Moreno, J.A., and Fridman, L. (2021). Reaction wheel pendulum control using fourth-order discontinuous integral algorithm. International Journal of Robust and Nonlinear Control, 31(1), 185–206.
- Iglesias-Rios, M., P´erez-Ventura, U., Fridman, L., and Mujica-Ortega, H. (2024). Super-twisting gain design for transfer heat processes based on identification of parasitic dynamics. In 2024 17th International Workshop on Variable Structure Systems (VSS), 13–18.
- Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International journal of control, 58(6), 1247–1263.
- Medvedeva, T., Sumenkov, O., and Fridman, L. (2024). Step-test based procedure for super-twisting algorithm gains adjustment. In 2024 17th International Workshop on Variable Structure Systems (VSS), 158–163.
- Mendoza-Avila, J., Castillo, I., and Iriarte, R. (2017). Higher order sliding mode stabilization of an inverted cart-pendulum system. IFAC-PapersOnLine, 50(1), 7157–7162.
Mendoza-Avila, J., Moreno, J.A., and Fridman, L.M. (2019). Continuous twisting algorithm for third-order systems. IEEE Transactions on Automatic control, 65(7), 2814–2825. - Pérez-Ventura, U. and Fridman, L. (2019a). Design of super-twisting control gains: A describing function based methodology. Automatica, 99, 175–180.
- Pérez-Ventura, U. and Fridman, L. (2019b). When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? Frequency domain criteria. International Journal of Robust and Nonlinear Control, 29(3), 810–828.
- Pérez-Ventura, U., Mendoza-Avila, J., and Fridman, L. (2021). Design of a proportional integral derivativelike continuous sliding mode controller. International Journal of Robust and Nonlinear Control, 31(9), 3439–3454.
- Quanser (2012). Linear inverted pendulum. Quanser Inc. Documentation.
- Utkin, V.I. (2013). Sliding modes in control and optimization. Springer Science & Business Media.
- Zhao, J. and Spong, M.W. (2001). Hybrid control for global stabilization of the cart–pendulum system. Automatica, 37(12), 1941–1951.
