Falcón, Romeo | TecNM/Instituto Tecnológico De La Laguna |
Ríos, Héctor | CONACYT – TECNM/Instituto Tecnológico De La Laguna |
Dzul, Alejandro | TecNM/Instituto Tecnológico De La Laguna |
Resumen: This work presents the design of a fault accommodation control for trajectory tracking in a Quad-Rotor under multiple actuator faults and external disturbances. The faults are modeled as partial loss of effectiveness. The proposed scheme is composed of a fault identification module, based on a finite-time sliding mode observer, and a robust nominal controller. Such a strategy uses the fault identification to partially compensate for the effect of faults, while the robust nominal controller deals with external disturbances. The performance of the proposed scheme is validated through numerical simulations.
¿Cómo citar?
Romeo Falcon, Hector Rios & Alejandro Dzul. Fault Accommodation Sliding-Mode Control for Quad-Rotor Tracking Trajectory. Memorias del Congreso Nacional de Control Automático, pp. 267-272, 2021.
Palabras clave
Fault Tolerant Control, Quad-Rotor, Fault Accommodation
Referencias
- Avram, R.C., Zhang, X., and Muse, J. (2017). Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators. IEEE Transactions on Control Systems Technology, 25(6), 2219–2226.
- Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2003). Diagnosis and fault tolerant control. Springer, New York.
- Chandra, K.P.B., Alwi, H., and Edwards, C. (2015). Fault reconstruction for a quadrotor using an lpv sliding mode observer1. IFAC-PapersOnLine, 48(21), 374–379.
- Dydek, Z., Annaswamy, A., and Lavretsky, E. (2013). Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Transactions on Control Systems Technology, 21(4), 1400–1406.
- García-Carrillo, L.R., Dzul-López, A., Lozano, R., and Pégard, C. (2013). Quad Rotorcraft Control. Advances in Indutrial Control. Springer-Verlag London Heidelberg New York Dordrecht, London.
- Levant, A. (2003). High-order sliding modes: differentiation and output-feedback control. International Journal of Control, 76(9-10), 924–941.
- Nian, X., Chen, W., Chu, X., and Xu, Z. (2020). Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. International Journal of Control, 93(3), 725–737.
- Ríos, H., Falcón, R., González, O., and Dzul, A. (2019). Continuous sliding-modes control strategies for quadrotor robust tracking: Real-time application. IEEE Transactions on Industrial Electronics, 66, 1264 – 1272.
- Song, Y., He, L., Zhang, D., Qian, J., and Fu, J. (2019). Neuroadaptive fault-tolerant control of quadrotor uavs: A more affordable solution. IEEE Transactions on Neural Networks and Learning Systems, 30(7), 1975– 1983.
- Torres-González, V., Sanchez, T., Fridman, L.M., and Moreno, J.A. (2017). Design of continuous twisting algorithm. Automatica, 80, 119–126.
- Wang, B. and Zhang, Y. (2018). An adaptive faulttolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Transactions on Industrial Electronics, 65(5), 4227–4236.
- Wang, B., Shen, Y., and Zhang, Y. (2020). Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerospace Science and Technology, 99, 105745.
- Wang, X., Sun, S., van Kampen, E.J., and Chu, Q. (2019). Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerospace Science and Technology, 87, 417–430.