Torres Orozco, Lazaro Fabricio | Universidad de Guadalajara |
Aldana, Carlos I. | Universidad de Guadalajara |
Nuño, Emmanuel | Universidad de Guadalajara |
Cruz-Zavala, Emmanuel | Universidad de Guadalajara |
https://doi.org/10.58571/CNCA.AMCA.2024.024
Resumen: In this paper, a modification of the classical proportional plus damping injection control scheme is proposed to solve the bilateral teleoperation problem in finite-time for fully actuated Euler-Lagrange systems in the joint space. In order to prove finite-time convergence, the controller is designed to provide global asymptotic stability and then, by properly designing the control parameters, the closed-loop system is proved to admit a homogeneous approximation of negative degree. Simulation results with a teleoperation system composed of two robots with six degrees of freedom are given to show the effectiveness of the proposed scheme.
¿Cómo citar?
Torres, L.F., Aldana, C.I., Nuño, E. & Cruz Zavala, E. (2024). Finite-time controller for robot bilateral teleoperation. Memorias del Congreso Nacional de Control Automático 2024, pp. 138-143. https://doi.org/10.58571/CNCA.AMCA.2024.024
Palabras clave
Euler-Lagrange (EL) systems, bilateral teleoperation, finite-time (FT) control, proportional-derivative (PD) control
Referencias
- Aldana, C.I., Garcia-Lopez, K., Nuño, E., and Cruz-Zavala, E. (2023). Task-space teleoperation with time-delays and without velocity measurements via a bounded controller. IEEE Control Systems Letters, 7, 1141-1146.
- Bacciotti, A. and Rosier, L. (2005). Lyapunov functions and stability in control theory. Springer-Verlag, New York.
- Basañez, L., Nuño, E., and Aldana, C.I. (2023). Teleoperation and Level of Automation, 457-482. Springer International Publishing.
- Bhat, S. and Bernstein, D. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and optimization, 38, 751-766.
- Bhat, S. and Bernstein, D. (2005). Geometric homogeneity with applications to finite-time stability. Mathemat ics of Control, Signals, and Systems, 17(2), 101-127.
- Dao, P., Nguyen, V., and Liu, Y.C. (2021). Finite-time convergence for bilateral teleoperation systems with disturbance and time-varying delays. IEEE Robotics and Automation Letters, 15(13), 1736-1748.
- Ebrahimian, M., Pourmokhtari, M., Ghiyasi, M., Yazdankhoo, B., and Beigzadeh, B. (2024). Online bilateral predictive control for time-delayed teleoperation of snake-like robots. Journal of Intelligent & Robotic Systems, 110(2), 80.
- Garcia-Lopez, K. (2023). Kinova gen3 lite library. https://robotcontrol-udg.com [Accessed:7-01-2024].
- Gutierrez-Giles, A., Rodriguez-Angeles, A., Schleer, P., and Arteaga, M.A. (2024). Time-varying delayed bilateral teleoperation without force/velocity measurements. IEEE Transactions on Control Systems Technology, 32(3), 780-792.
- Huh, S., Lee, U., Shim, H., Park, J.B., and Noh, J.H. (2011). Development of an unmanned coal mining robot and a teleoperation system. 2011 11th International Conference on Control, Automation and Systems.
- Lv, H., Yang, G., Zhou, H., Huang, X., Yang, H., and Pang, Z. (2020). Teleoperation of collaborative robot for remote dementia care in home environments. IEEE Journal of TransLational Engineering in Health and Medicine, 8.
- Nuño, E., Basañez, L., and Ortega, R. (2011). Passivity-based control for bilateral teleoperation: A tutorial. Automatica, 47(3), 485-495.
- Venkateswaran, D.B. and Qu, Z. (2020). A passivity-shortage based control design for teleoperation with time-varying delays. IEEE Robotics and Automation Letters, 5(3), 4070-4077.
- Wang, Z., Chen, Z., Liang, B., and Zhang, B. (2018). A novel adaptive finite time controller for bilateral teleoperation system. Acta Astronautica, 144, 263-270.
- Wang, Z., Tian, Y., Sun, Y., and Liang, B. (2020). Finitetime output-feedback control for teleoperation systems subject to mismatched term and state constraints. Journal of the Franklin Institute, 357(16), 11421-11447.
- Weber, B., Balachandran, R., Riecke, C., Stulp, F., and Selzer, M. (2019). Teleoperating robots from the international space station: Microgravity effects on performance with force feedback. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
- Yang, Y., Hua, C., and Guan, X. (2016). Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Transactions on Cybernetics, 46(3), 609-6019.
- Zhai, D.H. and Xia, Y. (2014). Robust saturation-based control of bilateral teleoperation without velocity measurements. International Journal of Robust and Nonlinear Control, 25(15), 2582-2607.
- Zhang, H., Song, A., and Shen, S. (2018). Adaptive finite-time synchronization control for teleoperation system with varying time delays. IEEE Access, 6, 40940-40949.