Cruz-Zavala, Emmanuel | Universidad de Guadalajara |
Aldana, Carlos | Universidad de Guadalajara |
Moreno, Jaime A. | Universidad Nacional Autonoma de Mexico |
Nuño, Emmanuel | Universidad de Guadalajara |
https://doi.org/10.58571/CNCA.AMCA.2023.001
Resumen: This paper proposes a control scheme in order to attain finite-time regulation of robots manipulators in the task-space. The stability analysis is carried out by means of strict Lyapunov functions since the well-known results of homogeneous systems cannot be applied directly. Simulations results verify the performance of the proposed control scheme.
Total descargados hasta ahora
82 Downloads
¿Cómo citar?
Cruz-Zavala, Emmanuel; Aldana, Carlos; Moreno, Jaime A; Nuño, Emmanuel. Finite-Time Regulation of Robot Manipulators in the Task-Space. Memorias del Congreso Nacional de Control Automático, pp. 169-174, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.001
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica; Control Basado en pasividad
Referencias
- Bacciotti, A. and Rosier, L. (2005). Liapunov functions and stability in control theory. Springer-Verlag, New York, 2nd edition.
- Bernstein, D. (2002). Matrix Mathematics: theory, facts, and formulas. Princeton University Press, New Jersey.
- Bhat, S. and Bernstein, D. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 38, 751-766.
- Cheah, C.C., Hirano, M., Kawamura, S., and Arimoto, S. (2003). Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Transactions on Robotics and Automation, 19(4), 692-702.
- Cheah, C.C., Kawamura, S., and Arimoto, S. (1999). Feedback control for robotic manipulator with an uncertain Jacobian matrix. Journal of Robotic Systems, 16(2), 119-134.
- Cheah, C.C. and Li, X. (2015). Sensory feedback Feedback Control of Robot Manipulators. Springer Verlag.
- Craig, J. (1989). Introduction to Robotics: Mechanics and control. Addison Wesley, Reading, MA, second edition.
- Cruz-Zavala, E., Nuño, E., and Moreno, J. (2017). Continuous finite-time regulation of Euler-Lagrange systems via energy shaping. International Journal of Control, 93(12), 2931-2940.
- Cruz-Zavala, E., Nuño, E., and Moreno, J. (2021a). Strict Lyapunov functions for finite-time control of robot manipulators. International Journal of Control, 94(11), 3112-3122.
- Cruz-Zavala, E., Nuño, E., andMoreno, J.A. (2021b). Robust trajectory-tracking in finite-time for robot manipulators using nonlinear proportional-derivative control plus feed-forward compensation. International Journal of Robust and Nonlinear Control, 31(9), 3878-3907.
- Feng, Y., Yu, X., and Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38, 2159-2167.
- Galicki, M. (2015). Finite-time control of robotic manipulators. Automatica, 51, 49-54.
- Galicki,M. (2016). Finite-time trajectory tracking control in a task space of robotic manipulator. Automatica, 67(1), 165-170.
- Hong, Y., Xu, Y., and Huang, J. (2002). Finite-time control for robot manipulators. Systems & Control Letters, 46, 243-253.
- Kelly, R. and Coello, A. (1998). Analysis and experimentation of transpose Jacobian-based cartesian regulators. Robotica, 17, 303-312.
- Kelly, R., Santibáñez, V., and Loría, A. (2005). Control of Robot Manipulators in Joint Space. Springer-Verlag, London, U.K.
- Sciavicco, L. and Siciliano, B. (1996). Modeling and Control of Robot Manipulators. McGraw-Hill, New York, second edition.
- Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators. I. Dyn. Syst. Meas. Control, 103, 119-125.
- Yu, S.H., Yu, X.H., Shirinzadeh, B., and Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11), 1957-1964.
- Yu, X., Feng, Y., and Man, Z. (2021). Terminal sliding mode control-an overview. IEEE Open Journal of the Industrial Electronics Society, 2, 36–52.
- Zavala-Río, A. and Fantoni, I. (2014). Global finitetime stability characterized through a local notion of homogeneity. IEEE Transactions on Automatic Control, 59(2), 471-477.