Resendiz Quintanar, Areli | Universidad Nacional Autónoma de México |
Estrada, Manuel A. | Universidad Nacional Autónoma de México |
Fridman, Leonid M. | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.023
Resumen: This paper analyzes the problem of the “unmatched” uncertain control coefficient in a class of linear systems. Sufficient conditions are determined to ensure the stability of the dynamics during the sliding mode. This communication states that it is possible to design first-order SMC when the direction in the control vector is unknown. Finally, the feasibility of the results is shown through simulations in a fin-controlled rocket model.
¿Cómo citar?
Resendiz, A., Estrada, M.A. & Fridman, L. (2024). First order SMC in the presence of uncertain control coefficient for a class of LTI systems. Memorias del Congreso Nacional de Control Automático 2024, pp. 132-137. https://doi.org/10.58571/CNCA.AMCA.2024.023
Palabras clave
sliding mode control, robust control, linear systems
Referencias
- Ackermann, J. and Utkin, V. (1998). Sliding mode control design based on Ackermann’s formula. IEEE transactions on automatic control, 43(2), 234–237.
- Castillo, I. and Fridman, L. (2013). Matlab toolbox for singular LQ based sliding mode control design. In 52nd IEEE Conference on Decision and Control, 4242–4247. IEEE.
- Choi, H.H. (1998). An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica, 34(8), 1015–1020. doi:10.1016/s0005-1098(98)00042-9.
- Choi, H.H. (1999). On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica, 35(10), 1707–1715. doi:10.1016/s0005-1098(99)00081-3.
- Choi, H.H. (2001). Variable structure control of dynamical systems with mismatched norm-bounded uncertainties: An LMI approach. International Journal of Control, 74(13), 1324–1334. doi:10.1080/00207170110061077.
- Choi, H.H. (2003). An LMI-based switching surface design method for a class of mismatched uncertain systems. IEEE Transactions on Automatic Control, 48(9), 1634–1638. doi:10.1109/tac.2003.817007.
- Drazenovic, B. (1969). The invariance conditions in variable structure systems. 5(3), 9. doi:10.1016/0005-1098(69)90071-5.
- Edwards, C. and Spurgeon, S.K. (1998). Sliding mode control: Theory and applications. Taylor Francis.
- Estrada, M.A., Fridman, L., and Moreno, J.A. (2024). Passive fault-tolerant control via sliding-mode-based Lyapunov redesign. IEEE Transactions on Automatic Control.
Etkin, B. (1972). Dynamics of atmospheric flight. Wiley. - Filippov, A.F. (2013). Differential equations with discontinuous righthand sides: control systems, volume 18. Springer Science & Business Media.
Jesionowski, R., Shtessel, Y., and Plestan, F. (2023). Sliding mode control design using generalized relative degree approach: Aerospace application. Journal of the Franklin Institute, 360(14), 10605–10632. doi: 10.1016/j.jfranklin.2023.08.002. - Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall, New Jersey.
- Petersen, I.R. (1987). A stabilization algorithm for a class of uncertain linear systems. Systems & control letters, 8(4), 351–357.
- Utkin, V.I. (1992). Sliding modes in control and optimization. Springer-Verlag.
Yamamoto, S. and Kimura, H. (1996). Quadratic stabilization control via H∞; controller and tuning up by time-varying gain. Transactions of the Society of Instrument and Control Engineers, 32(4), 486–494. doi: 10.9746/sicetr1965.32.486. - Yasuda, K. and Nakatsuji, Y. (1996). Robust sliding mode control of uncertain systems. Proceedings. 1996 IEEE International Workshop on Variable Structure Systems. – VSS’96 -. doi:10.1109/vss.1996.578531