Edgar Hiram, Robles Sauceda | Universidad de Guanajuato |
Torres del Carmen, Felipe de Jesus | Universidad de Guanajuato |
Balvantín García, Antonio de Jesús | Universidad de Guanajuato |
Martínez Ramírez, Israel | Universidad de Guanajuato |
López, Adolfo Rafael | Instituto Tecnológico Superior de Irapuato |
Ramos Negron, Oscar Jaime | Instituto Tecnológico Superior de Las Choapas |
https://doi.org/10.58571/CNCA.AMCA.2024.015
Resumen: This paper presents the analysis and synthesis of the fractional-order model of an electrohydraulic system expressed by fractional-order transfer functions of the servo valve and the double-acting cylinder by applying Caputo’s definition. From the analysis of the differential equations of the system dynamics, it is possible to obtain the fractional order expression that relates the output signal with respect to the input signal, of each of the analyzed elements. Then, these transfer functions are put in a block diagram to perform numerical simulations that allow comparing the performance of the proposed approach with respect to the modeling given in integer order. The results of the simulations have shown that the variation of the fractional exponent can reduce the settling time and rise time of the system response to a step input, however, it also shows the need to correctly understand the physical operation of the system to avoid a performance that does not correspond to real scenarios.
¿Cómo citar?
Robles, E.H., Torres, F.J., Balvantín, A.J., Martínez, I., López, A.R. & Ramos, O.J. (2024). Fractional Order Transfer Function for Modeling an Electrohydraulic System. Memorias del Congreso Nacional de Control Automático 2024, pp. 85-90. https://doi.org/10.58571/CNCA.AMCA.2024.015
Palabras clave
Fractional order, transfer function modeling, Caputo, electrohydraulic systems
Referencias
- Aboud, H., Amouri, A., Cherfia, A., and Bouchelaghem, A.M. (2024). Fractional-order pid controller tuned by particle swarm optimization algorithm for a planar cdpr control. Indonesian Journal of Electrical Engineering and Computer Science, 33(3), 1500–1510.
- Aburakhis, M. and Ordóñez, R. (2024). Generalization of direct adaptive control using fractional calculus applied to nonlinear systems. Journal of Control, Automation and Electrical Systems, 1–12.
- Ahmad, J., Ali, F., Murtaza, S., and Khan, I. (2021). Caputo time fractional model based on generalized fourier’s and fick’s laws for jeffrey nanofluid: Applications in automobiles. Mathematical Problems in Engineering, 2021, 1–12.
- Al-Dhaifallah, M. (2023). Fuzzy fractional-order pid control for heat exchanger. Alexandria Engineering Journal, 63, 11–16.
- Algehyne, E.A., Aldhabani, M.S., Areshi, M., El-Zahar, E.R., Ebaid, A., and Al-Jeaid, H.K. (2023). A proposed application of fractional calculus on time dilation in special theory of relativity. Mathematics, 11(15), 3343.
- Awadalla, M., Chaouk, A., Jneid, M., Abuasbeh, K., and Alahmadi, J. (2024). Processing the controllability of control systems with distinct fractional derivatives via kalman filter and gramian matrix. Fractal and Fractional, 8(1), 52.
- Boulaaras, S., Rehman, Z.U., Abdullah, F.A., Jan, R., Abdalla, M., and Jan, A. (2023). Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis. Aims Math, 8(4), 8680–8701.
- Dalir, M. and Bashour, M. (2010). Applications of fractional calculus. Applied Mathematical Sciences, 4(21), 1021–1032.
- Dolatkhah Takloo, S. and Mardani, M. (2020). Mechanically closed loop gearbox test rig controller. Transactions on Machine Intelligence, 3(1), 1–13.
- Guía-Calderón, M., Rosales-García, J., Guzmán-Cabrera, R., González-Parada, A., and Alvarez-Jaime, J. (2015). El cálculo diferencial e integral fraccionario y sus aplicaciones. Acta universitaria, 25(2), 20–27.
- Guo, Q. and Jiang, D. (2017). Nonlinear Control Techniques for Electro-Hydraulic Actuators in Robotics Engineering. CRC Press.
- Guo, Y.Q., Zha, X.M., Shen, Y.Y., Wang, Y.N., and Chen, G. (2022). Research on pid position control of a hydraulic servo system based on kalman genetic optimization.
- Huang, G., Qin, H.y., Chen, Q., Shi, Z., Jiang, S., and Huang, C. (2024). Research on application of fractional calculus operator in image underlying processing. Fractal and Fractional, 8(1), 37.
- Jaradat, I., Alquran, M., Sivasundaram, S., and Baleanu, D. (2021). Simulating the joint impact of temporal and spatial memory indices via a novel analytical scheme. Nonlinear Dynamics, 103(3), 2509–2524.
- Karacuha, E., Önal, N.Ö., Ergün, E., Tabatadze, V., Alka¸s, H., Kara¸cuha, K., Tontu¸s, H.O., and Nu, N.V.N. (2020). Modeling and prediction of the covid-19 cases with deep assessment methodology and fractional calculus. Ieee Access, 8, 164012–164034.
- Li, P. and Li, Y. (2023). Research on the electro-hydraulic servo system of picking manipulator. AIP Advances, 13(1).
- Li, Y., Zhou, Z., and Zhang, N. (2024). Fractional derivative method for anomalous aquitard flow in a leaky aquifer system with depth-decaying aquitard hydraulic conductivity. Water Research, 249, 120957.
- Liu, C. and Jiang, H. (2014). A seventh-order model for dynamic response of an electro-hydraulic servo valve. Chinese Journal of Aeronautics, 27(6), 1605–1611.
- Lu, Y. and Liang, Y. (2023). Fractional order modeling for hydraulic cylinder system controlled by electrohydraulic proportional valve. 5259–5264.
- Maddahi, A., Sepehri, N., and Kinsner, W. (2019). Fractional-order control of hydraulically powered actuators: Controller design and experimental validation. IEEE/ASME Transactions on Mechatronics, 24(2), 796–807.
- Meral, F., Royston, T., and Magin, R. (2010). Fractional calculus in viscoelasticity: an experimental study. Communications in nonlinear science and numerical simulation, 15(4), 939–945.
- Nisar, K.S., Farman, M., Abdel-Aty, M., and Cao, J. (2023). A review on epidemic models in sight of fractional calculus. Alexandria Engineering Journal, 75, 81–113.
- Prabhakaran, A., Ponnusamy, T., Janarthanan, G., et al. (2024). Optimized fractional order pid controller with sensorless speed estimation for torque control in induction motor. Expert Systems with Applications, 123574.
- Rao, K.N. and Chakraverty, S. (2024). Nonlinear fractional. Computation and Modeling for Fractional Order Systems, 103.
- Saif, A., Fareh, R., Sinan, S., and Bettayeb, M. (2024). Fractional synergetic tracking control for robot manipulator. Journal of Control and Decision, 11(1), 139–152.
- Santi, L. and Royer-Carfagni, G. (2024). Viscoelastic modeling via fractional calculus of the cold bending of laminated glass. Engineering Structures, 305, 117756.
- Shaikh, A.A. and Qureshi, S. (2022). Comparative analysis of riemann-liouville, caputo-fabrizio, and atangana-baleanu integrals. Journal of Applied Mathematics and Computational Mechanics, 21(1).
- Sun, H., Li, R., Xu, J., Xu, F., Zhang, B., and Dong, X. (2021). Fractional modeling and characteristic analysis of hydro-pneumatic suspension for construction vehicles. Processes, 9(8), 1414.
- Thayer, W. (1965). Transfer functions for moog servovalves. Moog technical bulletin, 103, 1–11.
- Valentim Junior, C.A., Oliveira, N.A.d., Rabi, J.A., and David, S.A. (2020). Can fractional calculus help improve tumor growth models? Journal of Computational and Applied Mathematics, 379, 1–15.
- Xue, D. (2017). Fractional-order control systems: fundamentals and numerical implementations, volume 1. Walter de Gruyter GmbH & Co KG.
- Yang, H., Feng, B., and Gong, G. (2011). Measurement of effective fluid bulk modulus in hydraulic system. Journal of Dynamic Systems, Measurement, and Control, 133(6). doi:10.1115/1.4004783.