Luis Santamaria-Padilla | Universidad Nacional Autónoma de México |
Ulises Badillo-Hernandez | Universidad Nacional Autónoma de México |
Luis Alvarez-Icaza | Universidad Nacional Autónoma de México |
Jesus Alvarez | Universidad Autónoma Metropolitana |
https://doi.org/10.58571/CNCA.AMCA.2022.036
Resumen: As necessary preamble for nonlinear control-estimation design, in this study fundamental stationary, transient and robustness characteristics of a spatially distributed tubular throated gasification tristable reactor are studied with efficient PDE-to-ODE discretization. The reactor is described by 15 nonlinear PDEs and has 5 steady-states (SSs): (i) 3 stable ones and (ii) 2 unstable ones. On the basis of process insight and extensive numerical simulation, perturbed initial conditions close to the hypersurface separatrix that divides the basins of attraction of the nominal and recently reported grate stable SSs were identified, verifying: the existence of the hypersurface separatrices that divide the basins of attraction of the stable nominal-H unstable saddle and L unstable saddle-stable extinction SS pairs. The comparison of the shapes and caloric efficiency of the nominal, grate stable as well as high-conversion unstable SS profiles yielded that: (i) the nominal stable SS exhibits the smallest production of undesirable tar, followed by the H unstable SS and the grate stable SS, and (ii) the temperature and biomass concentration profiles of the high-yield unstable SS and the grate stable SS are rather similar, and appreciable different from the nominal stable SS. With transients induced by pos/negative initial profile temperature deviations it was found: (i) which stable SSs is reached, and (ii) what the settling time, damping and profile front displacement are.
¿Cómo citar?
Santamaria-Padilla, L., Badillo-Hernandez, U., Alvarez, J. & Alvarez-Icaza, L. Fundamental aspects of the nonlinear dynamics of a biomass throated tubular gasification reactor. Memorias del Congreso Nacional de Control Automático, pp. 218-223, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.036
Palabras clave
Modelado e Identificación de Sistemas; Control de Procesos; Sistemas de Parámetros Distribuidos
Referencias
- Allgower, E. L., & Georg, K. (1990). Numerical continuation methods. An introduction. Springer Series in Computational Mathematics, 388.
- AllPowerLabs. (2021). All power labs. Retrieved June 5, 2021, from http://www.allpowerlabs.com/
- Amundson, N. R., & Arri, L. E. (1978). Char gasification in a countercurrent reactor. AIChE Journal, 24(1), 87–101. https://doi.org/10.1002/aic.690240110
- Badillo-Hernandez, U., Alvarez, J., & Alvarez-Icaza, L. (2019). Efficient modeling of the nonlinear dynamics of tubular heterogeneous reactors. Computers and Chemical Engineering, 123, 389–406. https://doi.org/10.1016/j.compchemeng.2019.01.018
- Baldea, M., & Daoutidis, P. (2012). Dynamics and nonlinear control of integrated process systems. In Dynamics and Nonlinear Control of Integrated Process Systems (Vol. 9780521191). https://doi.org/10.1017/CBO9780511978760
- Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/C2016-0-04056-1
- Bindel, D., Jonkhout, C., Govaerts, W., Hughes, J., Kuznetsov, Y. A., Pekker, M., & Veldman, D. (2019). CL_MATCONTL2019: continuation toolbox in MATLAB. Retrieved from http://uah.edu/faculty/pekker
- Di Blasi, C. (2000). Dynamic behaviour of stratified downdraft gasifiers. Chemical Engineering Science, 55(15), 2931–2944. https://doi.org/10.1016/S0009-2509(99)00562-X
- Hundsdorfer, W., & Verwer, J. G. (2003). Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. In SIAM Review (Vol. 33).
- Kuznetsov, Y. A. (1998). Elements of Applied Bifurcation Theory. In Elements of Applied Bifurcation Theory. https://doi.org/10.1007/b98848
- McKendry, P. (2002). Energy production from biomass (part 3): Gasification technologies. Bioresource Technology, 83(1), 55–63. https://doi.org/10.1016/S0960-8524(01)00120-1
- Patra, T. K., & Sheth, P. N. (2015, October 1). Biomass gasification models for downdraft gasifier: A state-ofthe-art review. Renewable and Sustainable Energy Reviews, Vol. 50, pp. 583–593. https://doi.org/10.1016/j.rser.2015.05.012
- Pérez, J. F., Melgar, A., & Benjumea, P. N. (2012). Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel, 96, 487–496. https://doi.org/10.1016/j.fuel.2012.01.064
- Santamaria-Padilla, L., Alvarez-Icaza, L., & Alvarez, J. (2016). “Modelado con validación experimental de un gasificador de biomasa." Memorias del Congreso Nacional de Control Automático, Querétaro, Querétaro, México. 2016.
- Santamaria-Padilla, L., Badillo-Hernandez, U., Álvarez, J., & Álvarez-Icaza, L. (2022). On the nonlinear dynamics of biomass throated tubular gasification reactors. Computers & Chemical Engineering, 107828. https://doi.org/10.1016/j.compchemeng.2022.107828
- Simone, M., Nicolella, C., & Tognotti, L. (2013). Numerical and experimental investigation of downdraft gasification of woody residues. Bioresource Technology, 133, 92–101. https://doi.org/10.1016/j.biortech.2013.01.056
- Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76(March), 989–1003. https://doi.org/10.1016/j.rser.2017.03.112
- Varma, A. (1980). On the Number and Stability of Steady States of a Sequence of Continuous-Flow Stirred Tank Reactors. Industrial and Engineering Chemistry Fundamentals, 19(3), 316–319. https://doi.org/10.1021/i160075a016
- Yucel, O., & Hastaoglu, M. A. (2016). Kinetic modeling and simulation of throated downdraft gasifier. Fuel Processing Technology, 144, 145–154. https://doi.org/10.1016/j.fuproc.2015.12.023
- Zitlalpopoca-Soriano, A. G., Vivaldo-Lima, E., & Flores-Tlacuahuac, A. (2010). Bifurcation analysis of a tubular reactor for nitroxide-mediated radical polymerization of styrene. Macromolecular Reaction Engineering, 4(9–10), 599–612. https://doi.org/10.1002/mren.201000003