Iglesias Rios, Matias | Universidad Nacional Autónoma de Mexico |
Fridman, Leonid M. | Universidad Nacional Autónoma de Mexico |
Moreno, Jaime A. | Universidad Nacional Autónoma de Mexico |
https://doi.org/10.58571/CNCA.AMCA.2023.013
Resumen: This paper presents sets of gains for the nested discontinuous controller family. The methodology for obtaining gains is based on a control Lyapunov function, this function determines the conditions for the value of each of the controller gains, the last gain being the one that is directly related to the boundaries of the disturbances and uncertainties. In this way the algorithm for obtaining gains can be summarized in three steps. The first step concerns about establishing the value of the weight vector, the degrees of homogeneity of the r-homogeneous functions that make up the proposed Lyapunov function. The second step consists of establishing the value of the first gain, which, for second and higher order controllers, is sufficient for it to be real positive. The third step is to determine the maximum value of an objective function. Moreover, it allows us to obtain the lower bound of the set of values for the gain that stabilize the system. The results show that the set of gains obtained stabilize the closed-loop system.
¿Cómo citar?
Iglesias Rios, Matias; Fridman, Leonid M.; Moreno, Jaime A. Gain Calculation of 0-Degree Homogeneous Controllers. Memorias del Congreso Nacional de Control Automático, pp. 80-85, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.013
Palabras clave
Control Discontinuo (modos deslizantes); Control de Sistemas No Lineales
Referencias
- Bacciotti, A. and Rosier, L. (2005). Liapunov functions and stability in control theory. Springer Science and Business Media.
- Bartolini, G., Ferrara, A., and Usai, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on automatic control, 43(2), 241-246.
- Bernuau, E., Efimov, D., Perruquetti, W., and Polyakov, A. (2014). On homogeneity and its application in sliding mode control. Journal of the Franklin Institute, 351(4), 1866-1901.
- Cruz-Zavala, E…. and Moreno, J…. (2017). Homogeneous high order sliding mode design: A lyapunov approach. Automatica, 80, 232-238.
- Emelyanov, S. (1986). Higher order sliding modes in the binary control systems. In Phys. Dokl., volume 4, 291-293.
- Feng, Y., Yu, X., and Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12), 2159-2167.
- Fridman, L., Moreno, J.A., Bandyopadhyay, B., Kamal, S., and Chalanga, A. (2015). Continuous nested algorithms: The fifth generation of sliding mode controllers. Recent advances in sliding modes: From control to intelligent mechatronics, 5-35.
- Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924-941.
- Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247-1263, 10.1080/00207179308923053.
- Perez-Ventura, U. and Fridman, L. (2019). Design of super-twisting control gains: A describing function based methodology. Automatica, 99, 175-180.
- Perez Ventura, U., Mendoza Avila, J., and Fridman, L. (2021). Design of a proportional integral derivative like continuous sliding mode controller. International Journal of Robust and Nonlinear Control, 31, 10.1002/rnc.5412.
- Rosier, L. (1992). Homogeneous lyapunov function for homogeneous continuous vector field. Systems & Control Letters, 19(6), 467-473.
- Sontag, E.D. (1989). A universal construction of artstein’s theorem on nonlinear stabilization. Systems & control letters, 13(2), 117-123.
- Utkin, V. (1991). Slides modes in control and optimization. Springer-Verlang.