Zamora-Gomez, Griselda I. | Inst. Potosino De Investigacion Cientifica Y Tecnologica |
Zavala-Rio, Arturo | Inst. Potosino De Investigacion Cientifica Y Tecnologica |
Lopez-Araujo, Daniela J. | Centro De Investigación En Ciencias De Información Geoespacial |
Santibanez, Victor | Inst. Tecnologico De La Laguna |
Resumen: A global continuous control scheme for the finite-time or (local) exponential stabilization of robot manipulators with bounded inputs is developed involving desired gravity compensation. With respect to the on-line compensation case, the proposed controller entails a more complex closed-loop analysis, whence more involved requirement arise. Other important analytical limitations are further overcome through the developed algorithm. Computer simulations considering a robotic arm model corroborate the efficiency of the proposed controller.
¿Cómo citar?
Griselda I. Zamora-Gómez, Arturo Zavala-Río, Daniela J. López-Araujo & Víctor Santibáñez. Global Continuous Control with Desired Gravity Compensation for the Finite-Time and Exponential Stabilization of Robot Manipulators with Constrained Inputs. Memorias del Congreso Nacional de Control Automático, pp. 66-71, 2018.
Palabras clave
Finite-time stabilization, robot manipulators, desired gravity compensation, bounded inputs
Referencias
- Bhat, S., and Bernstein, D. (2005). Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals and Systems, 17, 101–127.
- Hong, Y., Xu, Y., and Huang, J. (2002). Finite-time control for robot manipulators. Systems & Control Letters, 46, 243–253.
- Kelly, R., Santibáñez, V., and Loría, A. (2005). Control of robot manipulators in joint space. Springer, London.
- Khalil, H.K. (2002). Nonlinear Systems. 3rd edition, Prentice Hall, Upper Saddle River.
- Michel, A.N., Hou, L., and Liu, D. (2008). Stability of dynamical systems. Birkhauser, Boston.
- Sanyal, A.K., and Bohn, J. (2015). Finite-time stabilisation of simple mechanical systems using continuous feedback. International Journal of Control, 88, 783– 791.
- Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators. Journal of Dynamic Systems, Meas. and Control, 103, 119–125.
- Zavala-Río, A., and Fantoni, I. (2014). Global finitetime stability characterized through a local notion of homogeneity. IEEE Trans. on Aut. Ctl., 59, 471–477.
- Zavala-Río, A., and Zamora-Gómez, G.I. (2017). Localhomogeneity-based global continuous control for mechanical systems with constrained inputs: finite-time and exponential stabilization. International Journal of Control, 90, 1037–1051.
- Zhao, D., Li, S., Zhu, Q., and Gao, S. (2010). Robust finite-time control approach for robotic manipulators. IET Control Theory and Applications, 4, 1–15