Rojas-Ricca, Bryan | CINVESTAV-IPN |
Mondie, Sabine | CINVESTAV-IPN |
Castanos, Fernando | CINVESTAV-IPN |
Garrido, Rubén | CINVESTAV-IPN |
https://doi.org/10.58571/CNCA.AMCA.2023.050
Resumen: This article presents the prediction problem for uniformly observable nonlinear systems with input delay. The prediction problem is addressed using high-gain observer-based predictors. A modified Lyapunov-Krasovskii functional is used to analyze the exponential convergence of the prediction error. The predictor design and tuning are illustrated through a flexible joint robot with input delay.
¿Cómo citar?
Rojas-Ricca, Bryan; Mondie, Sabine; Castanos, Fernando; Garrido, Rubén. High-Gain Observer-Based Predictor for a Flexible Joint Robot with Input Delay. Memorias del Congreso Nacional de Control Automático, pp. 229-234, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.050
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica
Referencias
- Ahmed-Ali, T., Cherrier, E., and Lamnabhi-Lagarrigue, F. (2012). Cascade high gain predictors for a class of nonlinear systems. IEEE Transactions on Automatic Control, 57(1), 221-226. doi:10.1109/TAC.2011.2161795.
- Bacciotti, A. and Rosier, L. (2005). Liapunov Functions and Stability in Control Theory. Springer Berlin, Heidelberg, Netherlands. doi:10.1007/b139028.
- Besan,con, G. (2007). An overview on observer tools for nonlinear systems. In G. Besan,con (ed.), Nonlinear Observers and Applications, Lecture Notes in Control and Information Sciences, chapter 1. Springer Berlin, Heidelberg.
- Borri, A., Cacace, F., De Gaetano, A., Germani, A., Manes, C., Palumbo, P., Panunzi, S., and Pepe, P. (2017). Luenberger-like observers for nonlinear time-delay systems with application to the artificial pancreas: The attainment of good performance. IEEE Control Systems Magazine, 37(4), 33-49. doi:10.1109/MCS.2017.2696759.
- Boussaada, I., Niculescu, S.I., El Ati, A., P´erez-Ramos, R., and Liviu Trabelsi, K. (2020). Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design. ESAIM: Control, Optimisation and Calculus of Variations, 26, 57. doi:10.1051/cocv/2019073.
- Castaños, F. and Mondié, S. (2021). Observer-based predictor for a susceptible-infectious-recovered model with delays: An optimal-control case study. International Journal of Robust and Nonlinear Control, 31(11), 5118-5133. doi:10.1002/rnc.5522.
- Fridman, E. (2014). Introduction to Time-Delay Systems. Birkh¨auser Cham. doi:10.1007/978-3-319-09393-2.
- Gauthier, J. and Bornard, G. (1981). Observability for any u(t) of a class of nonlinear systems. IEEE Transactions on Automatic Control, 26(4), 922-926. doi:10.1109/TAC.1981.1102743.
- Gauthier, J., Hammouri, H., and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors. IEEE Transactions on Automatic Control, 37(6), 875-880. doi:10.1109/9.256352.
- Hammouri, H. (2007). Uniform observability and observer synthesis. In G. Besan,con (ed.), Nonlinear Observers and Applications, Lecture Notes in Control and Information Sciences, chapter 2. Springer Berlin, Heidelberg.
- Kharitonov, V.L. (2013). Time-Delay Systems: Lyapunov Functionals and Matrices. Birkh¨auser Boston. doi:10.1007/978-0-8176-8367-2.
- Lei, J. and Khalil, H.K. (2016). Feedback linearization for nonlinear systems with time-varying input and output delays by using high-gain predictors. IEEE Transactions on Automatic Control, 61(8), 2262-2268. doi:10.1109/TAC.2015.2491719.
- Marino, R. and Spong, M. (1986). Nonlinear control techniques for flexible joint manipulators: A single link case study. In 1986 IEEE International Conference on Robotics and Automation, volume 3, 1030–1036. doi:10.1109/ROBOT.1986.1087613.
- Nuño, E., Basañez, L., Ortega, R., and Spong, M.W. (2009). Position tracking for non-linear teleoperators with variable time delay. The International Journal of Robotics Research, 28(7), 895-910. doi:10.1177/0278364908099461.
- Rojas-Ricca, B., Casta˜nos, F., and Mondi´e, S. (September 27–30, 2022). Multiplicity-induced dominance in stabilization of state predictors for time-delay systems. In 17th IFAC Workshop on Time Delay Systems, 17th IFAC Workshop on Time Delay Systems. Montreal, Canada. doi:10.1016/j.ifacol.2022.11.324.
- Rojas-Ricca, B., Casta˜nos, F., and Mondié, S. (2023). Dominant-pole placement for predictor synthesis. Preprint, disponible en arXiv: https://arxiv.org/abs/2306.13828.
- Spong, M. (1990). Control of Flexible Joint Robots: A Survey. UILU-ENG / 22: UILU-ENG. University of Illinois, Coordinated Science Laboratory.