García-Santamaría, Miguel | Universidad Nacional Autónoma de México |
Mujica-Ortega, Hoover | Universidad Nacional Autónoma de México |
Avilés, Jesús David | Universidad Autónoma de Baja California |
https://doi.org/10.58571/CNCA.AMCA.2024.018
Resumen: This article presents the implementation of the digital twin of a process of interconnected atmospheric tanks, the parametric design was implemented with the help of software intended for computer-aided design based on the information provided by the manufacturer’s sheets and performing reverse engineering. A mathematical model is proposed using non-linear differential equations implemented in Matlab simulink, which reflects the fluid dynamics within the hydraulic plant reacting to disturbances generated by the control elements in real time. The digital twin was evaluated by executing different tank filling and emptying scenarios whose results were compared with tests in the physical plant, obtaining a good approximation of the results and ensuring that the mathematical model reacts to disturbances generated by the control elements in real time. By integrating the information obtained from the mathematical model with the 3D parametric model we obtain a software tool that is centralized, efficient and reproducible in which operators can experiment and accelerate the acquisition of knowledge as well as identify and classify control optimization opportunities of the studied process, emphasizing the fact of supporting decisionmaking without wasting valuable resources.
¿Cómo citar?
García Santamaría, M., Mujica Ortega, H. & Avilés, J.D. (2024). Implementation of the digital twin of an interconnected atmospheric tank process. Memorias del Congreso Nacional de Control Automático 2024, pp. 102-107. https://doi.org/10.58571/CNCA.AMCA.2024.018
Palabras clave
Gemelo digital, Industria 4.0, Control continuo, Mecánica de fluidos, Sistema no lineal
Referencias
- Cengel, Y.A., Boles, M.A., Campos Olguín, V., Colli Serrano, M.T., et al. (2003). Termodinámica.
Claudio, M. (1982). Mecanica de fluidos y maquinas hidráulicas. In 1982 Mecanica de fluidos y maquinas hidráulicas. Segunda edicion, 203–223. - Grieves M, V.J. (2017). Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems, kahlen fj, flumerfelt s, alves a. transdisciplinary perspectives on complex systems: New findings and approaches. In 2017 Springer International Publishing, 85–113.
- Janevska, G. (2013). Mathematical modeling of pump system.
- Lee, C. and Park, S. (2014). Survey on the virtual commissioning of manufacturing systems. In Journal of Computational Design and Engineering, 213–222. 10.7315/JCDE.2014.021.
- Macías Bejarano, C.S., Mujica Ortega, H., Correa Palacios, G., Maya Ortiz, P.R., Rocha Cózatl, E.G., and Castañeda Cede’no, S. (2018). Dise’no y desarrollo de una plataforma experimental para evaluar estrategias de control en procesos térmicos industriales.
- Zhong, C.K. (2010). The optimal choice of computer-aided design software in modern industrial design. In 2010 IEEE 11th International Conference on Computer-Aided Industrial Design Conceptual Design 1, volume 1, 153–155. 10.1109/CAIDCD.2010.5681383.
- Zhuang Cunbo, Liu Jianhua, X.H.D.X.L.S.W.G. (2017). The connotation, architecture and development trend of product digital twins. In 2017 Computer Integrated Manufacturing System, 753–768.