Esquivel, Jesús Aureliano | Universidad Autónoma de Coahuila |
Osuna González, Jorge Adrian | Universidad Autónoma de Coahuila |
https://doi.org/10.58571/CNCA.AMCA.2023.010
Resumen: This article presents an improvement to an algebraic observer to estimate the state of a mechanical system whose only feedback variable is acceleration. This problem appears in different mechanical systems, e.g., structures subject to the effects of earthquakes. The algebraic observer that motivates this work is constrained to a finite time range; it cannot observe for time very close to zero, nor beyond a large value, because it would make singular the matrix involved in the estimation. In this proposal these disadvantages are eliminated by obtaining a matrix with independent-of-time determinant. The objective of the observer is to estimate the position and velocity that correspond to the acceleration measure, for use in a recently published control law of the semi-active control system of a single-story building by means of a magnetorheological damper.

¿Cómo citar?
Esquivel, Jesús Aureliano; Osuna González, Jorge Adrian. Improvement of an Algebraic Observer for the Control of a One-Story Building. Memorias del Congreso Nacional de Control Automático, pp. 157-162, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.010
Palabras clave
Control de Procesos; Control de Sistemas No Lineales; Modelado e Identificación de Sistemas
Referencias
- Abé, M. and Igusa, T. (1996). Semi-active Dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 5.
- Atam, E. (2019). Friction damper-based passive vibration control assessment for seismically-excited buildings through comparison with active control: A case study. IEEE Access, 7, 4664-4675.
- Bejarano, F., Pisano, A., and Usai, E. (2011). Finite-time converging jump observer for switched linear systems with unknown inputs. Nonlinear Anal. Hybrid Syst., 5, 174-188.
- Delpoux, R., Floquet, T., and Sira-Ramírez, H. (2021). Trajectory tracking of second-order systems using acceleration feedback. Automation, 2, 266-277.
- Diop, S. and Fliess, M. (1991). Nonlinear observability, identifiability, and persistent trajectories. In Proceedings of the 30th Conference on Decision and Control, 714-719. Brighton, England.
- Duncan, T., Mandl, P., and Pasik-Duncan, B. (1996). Numerical differentiation and parameter estimation in higher-order linear stochastic systems. IEEE Trans. Autom. Control, 41, 522-532.
- Fliess, M. and Sira-Ramírez, H. (2003). An algebraic framework for linear identification. ESAIM Control Optim. Calc. Var, 7(9), 151-168.
- Ibrir, S. (2004). Linear time-derivative trackers. Automatica, 40, 397-405.
- Klein, R. and Healey, M. (1985). Semi-active control of wind induced oscillations in structures. In , 2nd Int. Symp. on Struct. Control, 354-369.
- Nemir, D., Lin, Y., and Osegueda, R. (1994). Semiactive motion control using variable stiffness. Struct. Eng., (120), 1291-1306.
- Osegueda, R. and Nemir, D. (1991). Structural motion control using modal energy transference. In Proceedings of the 30th Conference on Decision and Control, 512-514.
- Repinaldo, J.P., Koroishi, E.H., and Lara-Molina, F.A. (2021). Neuro-fuzzy control applied on a 2dof structure using electromagnetic actuators. IEEE Latin America Transactions, 19(1).
- Rodríguez-Torres, A., Morales-Valdez, J., and Yu, W. (2022). Semi-active control for 1 story building via a magnetorheological damper. In Memorias del 2022 Congreso Nacional de Control Automático, Tuxtla Gutiérrez, México.
- Soong, T. (1990). Active Structural Control: Theory and Practice. Longman Scientific & Technical, and John Wiley & Sons, Inc. New York.