| Jesus G. Alvarez | Universidad de Guadalajara |
| Oscar D. Sanchez | Universidad de Guadalajara |
| Alma Y. Alanis | Universidad de Guadalajara |
https://doi.org/10.58571/CNCA.AMCA.2025.021
Resumen: This paper presents a comparative analysis of four strategies for intelligent fault classification based on real-time data analysis. The number of research publications proposing different intelligent classification strategies is extensive, but the vast majority of the proposed classifiers operate offline. This paper explores different intelligent classification techniques with the goal of implementing them in real-time for fault detection in nonlinear dynamic systems. Real-time data classification is highly relevant for the design of fault-tolerant control systems.
¿Cómo citar?
Alvarez, J., Sanchez, O. & Alanis, A. (2025). Intelligent Fault Detection through Real-Time Data Analysis. Memorias del Congreso Nacional de Control Automático 2025, pp. 121-125. https://doi.org/10.58571/CNCA.AMCA.2025.021
Palabras clave
Time series modeling; Fault detection and diagnosis; Artificial neural networks; Classification; Real-time systems.
Referencias
- Sanchez, Oscar D. and Martinez-Soltero, Gabriel and Alvarez, Jesus G. and Alanis, Alma Y. Real-Time Neural Classifiers for Sensor and Actuator Faults in Three-Phase Induction Motors. Machines 2022, 10, 1198.
- Rodriguez-Guerra, J.; Calleja, C.; Pujana, A.; Elorza, I.; Macarulla, A.M. Fault-tolerant control study and classification: Case study of a hydraulic-press model simulated in real-time. Int. J. Electr. Inf. Eng. 2019, 13, 115–127.
- Chen, H.; Jiang, B.; Ding, S.X.; Huang, B. Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1700–1716.
- Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review. IEEE Access 2019, 7, 122644–122662.
- Zhang, J.; Swain, A.K.; Nguang, S.K. Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®; Springer: Berlin/Heidelberg, Germany, 2016.
- Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315.
- Perea, J.A.; Harer, J. Sliding windows and persistence: An application of topological methods to signal analysis. Found. Comput. Math. 2015, 15, 799–838.

