Avilés, Jesús David | Universidad Autónoma de Baja California |
Ramirez-Barrios, Miguel | Instituto Politécnico Nacional |
Mera, Manuel | Instituto Politécnico Nacional |
Ríos, Héctor | Tecnológico Nacional de MéxicoLa Laguna |
https://doi.org/10.58571/CNCA.AMCA.2024.066
Resumen: Due to the anesthesia delivery-related consequences during general surgery, it is desirable to regulate hypnosis during the surgery through an anesthesia infusion closed-loop system. In this paper, a closed-loop scheme is based on the patient’s kinetic and dynamic drug model, where the Bispectral index is the available output. In order to generate the feedback and recover the necessary states, an interval observer is designed based on the system’s positivity and cooperativity properties. Then, a Model Predictive Control (MPC) is implemented to ensure the correct propofol delivery using the estimated states and output. Finally, the proposed interval observer and MPC performances are validated by simulations in three silico patients.
¿Cómo citar?
Avilés, J. D., Ramirez Barrios, M., Mera, M. & Ríos, H. (2024). Interval Observer-Based Model Predictive Control in the Propofol Delivery Process. Memorias del Congreso Nacional de Control Automático 2024, pp. 387-392. https://doi.org/10.58571/CNCA.AMCA.2024.066
Palabras clave
Anesthesia, MPC, Interval Observers
Referencias
- Angeli, D. and Sontag, D. (2003). Monotone control systems. IEEE Transactions Automatic, 48(10), 1684–1698.
- Duan, G.R. and Yu, H.H. (2013). LMIs in control systems: analysis, design and applications. CRC press.
- Dumont, G.A. (2012). Closed-loop control of anesthesia-a review. IFAC Proceedings Volumes, 45(18), 373–378.
- Efimov, D., Perruquetti, W., Raïssi, T., and Zolghadri, A. (2013). On interval observer design for time-invariant discrete-time systems. ECC.
- Falcón, F., Ramírez-Barrios, M., Sandre, O., Mera, M., and Ordaz, P. (2022). Model predictive control with exponential cost function to regulate the propofol infusion rate. In 2022 XXIV Robotics Mexican Congress (COMRob), 89–94.
- Gouzé, J.L., Rapaport, A., and Hadj-Sadok, M.Z. (2000). Interval observers for uncertain biological systems. Ecol Modelling, 133(1-2), 45–56.
- Hirsch, M., Smith, H., et al. (2005). Monotone dynamical systems. Handbook of differential equations: ordinary differential equations, 2, 239–357.
- Naşcu, I., Krieger, A., Ionescu, C.M., and Pistikopoulos, E.N. (2015). Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia. IEEE Transactions on Biomedical Engineering, 62(3), 832–841.
- Ramírez-Barrios, M., Gutiérrez, C.P., Sandre, O., Mera, M., and Ordaz, P. (2023). Automation for regulation of deep hypnosis by delivery of propofol and remifentanil. In 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), volume 7, 1–6.
- Sandre-Hernandez, O., Ramírez-Barrios, M., Ordaz, P., and Mera, M. (2023). Multivariable discrete mpc with exponential cost function on the automation of the anesthesia process. International Journal of Robust and Nonlinear Control.
- Soltesz, K., Hahn, J.O., Hӓgglund, T., Dumont, G.A., and Ansermino, J.M. (2013). Individualized closed-loop control of propofol anesthesia: A preliminary study. Biomedical Signal Processing and Control, 8(6), 500–508.
- Wang, L. (2001). Use of exponential data weighting in model predictive control design. In Proceedings of the 40th IEEE Conference on Decision and Control, 4857–4862 vol.5.