M. J. Marquez-Zepeda | Tecnologico Nacional de Mexico, I.T. Tuxtla Gutierrez |
I. Santos-Ruiz | Tecnologico Nacional de Mexico, I.T. Tuxtla Gutierrez |
E. J. Perez-Perez | Tecnologico Nacional de Mexico, I.T. Tuxtla Gutierrez |
H.R. Hernandez-De Leon | Tecnologico Nacional de Mexico, I.T. Tuxtla Gutierrez |
https://doi.org/10.58571/CNCA.AMCA.2022.009
Resumen: This paper presents the development of low-cost CO2 remote monitoring devices based on NDIR sensors, and the design of a Nonlinear Autoregressive Neural Network (NAR) that forecasts the indoor CO2 concentration in the short and medium term to avoid risks of SARS-CoV-2 contagion due to the accumulation of poor quality air previously breathed by other people. Different configurations of the NAR were analyzed, varying the number of layers, the number of neurons per layer and the number of input delays. The best network configurations predicted changes in CO2 concentration in an academic office up to a four-hour horizon with an RMS error around 30 ppm.
¿Cómo citar?
Marquez-Zepeda, M., Santos-Ruiz, I., Perez-Perez, E. & Hernandez-De Leon, H. IoT-Based CO2 Monitoring and Forecasting System to Prevent Transmission of COVID-19. Memorias del Congreso Nacional de Control Automático, pp. 61-66, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.009
Palabras clave
Redes Neuronales; Control Inteligente; Modelado e Identificación de Sistemas
Referencias
- Aguilar, R.M., Torres, J., and Martín, C. (2020). Red neuronal autorregresiva no lineal con entradas exógenas para la predicción del electroencefalograma fetal. In XXXVIII Jornadas de Automática: Gijon, 6, 7, y 8 de septiembre de 2017. Universidade da Coruña. Servizo de Publicacions.
- Altikat, S., Gulbe, A., Kucukerdem, H.K., and Altikat, A. (2020). Applications of artificial neural networks and hybrid models for predicting CO2 flux from soil to atmosphere. Int. J. Environ. Sci. Technol. (Tehran), 17(12), 4719–4732.
- CDC (2021). Scientific Brief: SARS-CoV-2 Transmission. Centers for Disease Control and Prevention.
- Enriquez Jimenez, M. and Pratt Archilla, V. (2021). La Transmisión del SARS-CoV-2 en aerosol y mecanismos de protección. In Libro Blanco, 68.
- Kapoor, N.R., Kumar, A., Kumar, A., Kumar, A., Mohammed, M.A., Kumar, K., Kadry, S., and Lim, S. (2022). Machine learning-based co2 prediction for office room: A pilot study. Wireless Communications and Mobile Computing, 2022.
- Kutter, J.S., de Meulder, D., Bestebroer, T.M., Lexmond, P., Mulders, A., Richard, M., Fouchier, R.A., and Herfst, S. (2021). SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature communications, 12(1), 1–8.
- Lahrz, T., Bischof, W., Sagunski, H., et al. (2008). Gesundheitliche bewertung von kohlendioxid in der innenraumluft. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 51(11), 1358–69.
- Martin, C.R. and Bari N. Turpie, N.Z. (2017). Evaluation and environmental correction of ambient CO2measurements from a low-cost NDIR sensor. Atmos. Meas. Tech., 1–13.
- Moreno Grau, S., Alvarez León, E., García dos Santos Alves, S., Diego Roza, C., Ruiz de Adana, M., Marín Rodríguez, I., Rodríguez -Baño, J., Tomás Carmona, M., Minguillón, M.C., and van der Haar, R. (2020). Evaluación del riesgo de la transmisión de SARS-CoV-2 mediante aerosoles. Medidas de prevención y recomendaciones. Documento Técnico. Ministerio de Sanidad.
- Nusseck Manfred, Richter Bernhard, S.C. (2021). CO2 measurements in instrumental and vocal closed room settings as a risk reducing measure for a Coronavirus infection. MedRxiv & bioRxiv, 2–5.
- OMS (2020). Schools and other educational institutions transmission investigation protocol for coronavirus disease 2019. World Health Organization.
- Peng, Z. and Jimenez, J.L. (2021). Exhaled co2 as a covid-19 infection risk proxy for different indoor environments and activities. Environmental Science & Technology Letters, 8(5), 392–397.
- Robin, Y., Amann, J., Baur, T., Goodarzi, P., Schultealbert, C., Schneider, T., and Schütze, A. (2021). Highperformance VOC quantification for IAQ monitoring using advanced sensor systems and deep learning. Atmosphere (Basel), 12(11), 1487.
- Tripathi, B.S., Gupta, R., and Reddy, S. (2021). Cloud architecture based learning kit platform for education and research–a survey and implementation. In International Symposium on Ubiquitous Networking, 172–185. Springer.
- Zemitis, J., Bogdanovics, R., and Bogdanovica, S. (2021). The study of CO2 concentration in a classroom during the COVID-19 safety measures. In E3S Web of Conferences, volume 246, 01004. EDP Sciences.