M. Martínez-Ramírez | CINVESTAV |
H. Rodríguez-Cortés | CINVESTAV |
https://doi.org/10.58571/CNCA.AMCA.2022.041
Resumen: This paper presents a solution to the path following problem for fixed-wing aircraft on the cartesian plane. The solution considers the lateral-directional aircraft dynamics, the geometric structure of the aircraft kinematics, and an inner-outer control loop configuration. Numerical simulations employing Matlab-Simulink and the flight simulator X-Plane are presented to verify the performance of the proposed control algorithm.
¿Cómo citar?
Martínez-Ramírez, M. & Rodríguez-Cortés, H. Lateral directional geometric control for small fixed-wing aircraft. Memorias del Congreso Nacional de Control Automático, pp. 350-355, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.041
Palabras clave
Control de Sistemas No Lineales; Robótica y Mecatrónica; Otros Tópicos Afines
Referencias
- Ali, S.U., Samar, R., Shah, M.Z., Bhatti, A.I., Munawar, K., and Al-Sggaf, U.M. (2016). Lateral guidance and control of uavs using second-order sliding modes. Aerospace Science and Technology, 49, 88–100. doi:https://doi.org/10.1016/j.ast.2015.11. 033. URL https://www.sciencedirect.com/science/article/pii/S1270963815003776.
- Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., and Moreno, J.A. (2016). Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Transactions on Industrial Electronics, 63(6), 3677–3685. doi:10.1109/TIE.2016.2523913.
- Coates, E.M. and Fossen, T.I. (2021). Geometric reduced-attitude control of fixed-wing uavs. Applied Sciences, 11(7). doi:10.3390/app11073147. URL https://www.mdpi.com/2076-3417/11/7/3147.
- Corona-Sánchez, J.J., Guzmán Caso, ´O.R., and Rodríguez -Cortés, H. (2019). A coordinated turn controller for a fixed-wing aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1728–1740.
- Fecko, M. (2006). Differential Geometry and Lie Groups for Physicists. Cambridge University Press. doi:10.1017/CBO9780511755590.
- Golestani, M. and Mohammadzaman, I. (2015). Pid guidance law design using short time stability approach. Aerospace Science and Technology, 43, 71–76. doi:https://doi.org/10.1016/j.ast. 2015.02.016. URL https://www.sciencedirect.com/science/article/pii/S1270963815000735.
- Khalil, H.K. (2002). Nonlinear Systems. Pearson Education. Prentice Hall. URL https://books.google.com.mx/books?id=t_d1QgAACAAJ.
- Koditschek, D.E. (1989). The application of total energy as a Lyapunov function for mechanical control systems. Contemporary Mathematics, 97, 131.
- Lee, T. (2015). Global exponential attitude tracking controls on so(3). IEEE Transactions on Automatic Control, 60(10), 2837–2842. doi:10.1109/TAC.2015.2407452.
- Luo, Y., Chao, H., Di, L., and Chen, Y. (2011). Lateral directional fractional order (pi) α control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET control theory & applications, 5(18), 2156–2167.
- Marsden, J.E. and Ratiu, T.S. (1999). Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts in applied mathematics. Springer.
- Morelli, E.A. and Klein, V. (2016). Aircraft system identification: theory and practice, volume 2. Sunflyte Enterprises Williamsburg, VA.
- Moreno, J.A. and Osorio, M. (2012). Strict lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4), 1035–1040. doi:10.1109/TAC.2012.2186179.
- Park, S., Deyst, J., and How, J. (2004). A new nonlinear guidance logic for trajectory tracking. In AIAA guidance, navigation, and control conference and exhibit, 1–16.
- Ren, W. and Beard, R.W. (2004). Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. IEEE Transactions on Control Systems Technology, 12(5), 706–716.
- Rosario-Gabriel, I. and Cort´es, H.R. (2018). Aircraft longitudinal control based on the lanchester’s phugoid dynamics model. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 924–929. doi:10.1109/ICUAS.2018.8453350.
- Rysdyk, R. (2006). Unmanned aerial vehicle path following for target observation in wind. Journal of Guidance, Control, and Dynamics, 29(5), 1092–1100. doi:10.2514/1.19101. URL https: //doi.org/10.2514/1.19101.
- Samar, R., Ahmed, S., and Aftab, F. (2007). Lateral control with improved performance for uavs. IFAC Proceedings Volumes, 40(7), 37–42.
- Stephan, J., Pfeifle, O., Notter, S., Pinchetti, F., and Fichter, W. (2020). Precise tracking of extended three-dimensional dubins paths for fixed-wing aircraft. Journal of Guidance, Control, and Dynamics, 43(12), 2399–2405. doi:10.2514/1.G005240. URL https://doi.org/10.2514/1.G005240.
- Stevens, B.L., Lewis, F.L., and Johnson, E.N. (2015). Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons.
- Thomas, P. (Retrieved February 25, 2022). X-Plane Blockset. MATLAB Central File Exchange. URL https://www.mathworks.com/matlabcentral/fileexchange/76028-x-plane-blockset.
- Yamasaki, T., Balakrishnan, S., and Takano, H. (2012). Integrated guidance and autopilot design for a chasing uav via high-order sliding modes. Journal of the Franklin Institute, 349(2), 531–558.