Díaz-Aciego Carlos-Ernesto | Universidad Michoacana de San Nicolas de Hidalgo |
Anzurez-Marin Juan | Universidad Michoacana de San Nicolas de Hidalgo |
Lopez-Estrada Francisco-Ronay | Tecnológico Nacional de México, I.T. Tuxtla Gutiérrez |
Dominguez-Zenteno, Joaquin | Tecnológico Nacional de México, I.T. Tuxtla Gutiérrez |
https://doi.org/10.58571/CNCA.AMCA.2022.031
Resumen: This paper presents a lateral speed controller for an autonomous vehicle based on linear parameter varying (LPV) modelling. The lateral control is highly implemented in cars due to assisted direction and trajectory corrections provided by electronic speed controllers (ESC). In order to guarantee the stability and performance criteria of the proposed controllers, Linear Matrix Inequalities (LMI) are used. The proposed schemes are then validated under different simulations.
¿Cómo citar?
Díaz-Aciego C., Lopez-Estrada F., Anzurez-Marin . & Dominguez-Zenteno, J. Lateral Speed Control of an Autonomous Vehicle employing Linear Parameter Varying Techniques. Memorias del Congreso Nacional de Control Automático, pp. 337-343, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.031
Palabras clave
Control de Sistemas Lineales; Control Clásico; Robótica y Mecatrónica
Referencias
- Abbas, M.A., Milman, R., and Eklund, J.M. (2017). Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles. Canadian Journal of Electrical and Computer Engineering, 40(1), 12–22. doi:10.1109/CJECE.2016.2609803.
- Aguiar, A.P., Dacic, D.B., Hespanha, J.P., and Kokotovic, P. (2004). Path-following or reference tracking?: An answer relaxing the limits to performance. IFAC Proceedings Volumes, 37(8), 167–172. doi: https://doi.org/10.1016/S1474-6670(17)31970-5. IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5-7 July 2004.
- Alcalá, E., Puig, V., and Quevedo, J. (2019). Lpv-mpc control for autonomous vehicles. IFAC-PapersOnLine, 52(28), 106–113.
- Alcalá Baselga, E. (2020). Advances in planning and control for autonomous vehicles. Allibert, G., Courtial, E., and Toure, Y. (2008).
- Real-time visual predictive controller for imagebased trajectory tracking of a mobile robot. IFAC Proceedings Volumes, 41(2), 11244–11249. doi: https://doi.org/10.3182/20080706-5-KR-1001.01905. 17th IFAC World Congress.
- Cheng, S., Li, L., Chen, X., Wu, J., et al. (2020). Modelpredictive-control-based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying. IEEE Transactions on Industrial Electronics, 68(9), 8698–8707.
- De Luca, A., Oriolo, G., Samson, C., and Laumond, J. (1998). Robot motion planning and control. Feedback Control of a Nonholonomic Car-Like Robot, Lecture Notes in Control and Information Sciences, Springer Verlag, 229, 171–253.
- Guldner, J. and Utkin, V. (1994). Stabilization of non-holonomic mobile robots using lyapunov functions for navigation and sliding mode control. In Proceedings of 1994 33rd IEEE Conference on Decision and Control, volume 3, 2967–2972 vol.3. doi: 10.1109/CDC.1994.411340.
- Hoffmann, C. and Werner, H. (2014). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Transactions on Control Systems Technology, 23(2), 416–433.
- Jiang, Z.P. and Niejmeier, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form. 44, 265–279.
- Li, P., Nguyen, A.T., Du, H., Wang, Y., and Zhang, H. (2021). Polytopic lpv approaches for intelligent automotive systems: State of the art and future challenges. Mechanical Systems and Signal Processing, 161, 107931.
- López-Estrada, F.R., Ponsart, J.C., Theilliol, D., Zhang, Y., and Astorga-Zaragoza, C.M. (2016). Lpv modelbased tracking control and robust sensor fault diagnosis for a quadrotor uav. Journal of Intelligent & Robotic Systems, 84(1), 163–177.
- Micha lek, M. and Koz lowski, K. (2011). Finitetime and asymptotic stabilization of car-like kinematics with amplitude-limited control input. IFAC Proceedings Volumes, 44(1), 3497–3502. doi: https://doi.org/10.3182/20110828-6-IT-1002.00104. 18th IFAC World Congress.
- Nascimento, T.P., D´orea, C.E.T., and Gon,calves, L.M.G. (2018). Nonholonomic mobile robots’ trajectory tracking model predictive control: a survey. Robotica, 36, 676–696.
- Nemeth, B., G´asp´ar, P., Orjuela, R., and Basset, M. (2015). Lpv-based control design of an adaptive cruise control system for road vehicles. IFAC-PapersOnLine, 48(14), 62–67.
- Rotondo, D., S´anchez, H.S., Nejjari, F., and Puig, V. (2019). Análisis y diseño de sistemas lineales con parámetros variantes utilizando lmis. Revista Iberoamericana de Automática e Informática industrial, 16(1), 1–14.
- Sename, O., Gaspar, P., and Bokor, J. (2013). Robust control and linear parameter varying approaches: application to vehicle dynamics, volume 437. Springer.
- Shamma, J.S. (2012). An overview of lpv systems. Control of linear parameter varying systems with applications, 3–26.
- Snider, J.M. et al. (2009). Automatic steering methods for autonomous automobile path tracking. Robotics
- Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08.
- Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1), 116–132.
- Teppa Garran, P.A. (2008). Control robusto de un sistema lineal de parámetros variantes (lpv): Un enfoque de las desigualdades matriciales lineales (lmi). Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 23(1), 5–17.