Emmanuel Nuño | University of Guadalajara |
Angel I. Paredes | University of Guadalajara |
Tonatiuh Hernández | University of Guadalajara |
Antonio Loría | L2S-CentraleSupelec, CNRS |
Elena Panteley | L2S-CentraleSupelec, CNRS |
https://doi.org/10.58571/CNCA.AMCA.2022.083
Resumen: This paper proposes a solution for the leader-follower consensus formation control problem of nonholonomic vehicles that exhibit input constraints. In this consensus problem, the position and the orientation of all the vehicles has to be regulated at a desired equilibrium, hence this pertains to a stabilization scenario. Therefore, in order to satisfy Brockett’s theorem, the controller has to be designed to be either discontinuous or time-varying. The proposed scheme is a smooth bounded Proportional plus damping injection controller that incorporates a persistency of excitation term. A comparative simulation analysis with an unbounded control scheme is also provided.
¿Cómo citar?
Nuño, E., Loría, A., Paredes, A., Hernández, T. & Panteley, E.. Leader-Follower Consensus Formation Control of Nonholonomic Vehicles with Input Constraints. Memorias del Congreso Nacional de Control Automático, pp. 492-497, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.083
Palabras clave
Sistemas Multi-Agente; Robótica y Mecatrónica; Control de Sistemas No Lineales
Referencias
- Cao, Y. and Ren, W. (2011). Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer verlag.
- Cruz-Zavala, E., Nu˜no, E., and Moreno, J.A. (2019). Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping. Int. J. Rob. Nonlin. Contr., 29(17), 6006–6030.
- Dimarogonas, D. and Kyriakopoulos, K. (2007). On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control, 52(5), 916–922.
- Do, K.D. (2009). Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges. Robotics and Autonomous Systems, 57(6), 34–47.
- Fu, J., Lv, Y., Wen, G., and Yu, X. (2021). Local measurement based formation navigation of nonholonomic robots with globally bounded inputs and collision avoidance. IEEE Transactions on Network Science and Engineering, 8(3), 2342–2354. doi: 10.1109/TNSE.2021.3089833.
- Hatanaka, T., Chopra, N., Fujita, M., and Spong, M. (2015). Passivity-Based Control and Estimation in Networked Robotics. Communications and Control Engineering. Springer.
- Hong, Y., Hu, J., and Gao, L. (2006). Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 42(7), 1177–1182.
- Kostic, D., Adinandra, S., Caarls, J., VandeWouw, N., and Nijmeijer, H. (2010). Saturated control of timevarying formations and trajectory tracking for unicycle multiagent systems. 49th IEEE Conference on Decision and Control (CDC), 4054–4059.
- Lin, Z., Francis, B., and Maggiore, M. (2005). Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Contr., 50(1), 121–127.
- Lizárraga., D.A. (2004). Obstructions to the existence of universal stabilizers for smooth control systems. Mathematics of Control, Signals and Systems, 16, 255–277.
- Loría, A. (2008). From feedback to cascadeinterconnected systems: Breaking the loop. In Proc. 47th. IEEE Conf. Decis. Contr., 4109–4114. Cancun, Mex.
- Loría, A., Nu˜no, E., and Panteley, E. (2022). Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems. IEEE Trans. Automat. Contr. (Early Access). doi:10.1109/TAC.2021.3136140.
- Mera, M., Rios, H., and Martinez, E. (2020). A slidingmode based controller for trajectory tracking of perturbed unicycle mobile robots. Control Engineering Practice, 102, 104548.
- Nuño, E., Loría, A., Hernández, A.T., Maghenem, M., and Panteley, E. (2020). Distributed consensusformation of force-controlled nonholonomic robots with time-varying delays. Automatica, (120), 109114.
- Nuño, E., Loría, A., and Panteley, E. (2022). Leaderless consensus formation control of cooperative multiagent vehicles without velocity measurements. IEEE Contr. Syst. Lett., 6, 902–907.
- Panteley, E., Loria, A., and Teel, A. (2001). Relaxed persistency of excitation for uniform asymptotic stability. IEEE Transactions on Automatic Control, 46(12), 1874–1886.
- Peng, Z., Wen, G., Rahmani, A., and Yu, Y. (2015). Distributed consensus- based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. International Journal of Systems Science, 46(8), 1447—-1457.
- Ren, W. and Beard, R.W. (2008). Distributed consensus in multi-vehicle cooperative control. Springer verlag, London, U.K. Ren, W. (2009). Distributed leaderless consensus algorithms for networked euler–lagrange systems. International Journal of Control, 82(11), 2137–2149.
- Wang, H. (2014). Consensus of networked mechanical systems with communication delays: A unified framework. IEEE Transactions on Automatic Control, 59(6), 1571—-1576.
- Yu, X. and Liu, L. (2015). Distributed formation control of nonholonomic vehicles subject to velocity constraints. EEE Transactions on Industrial Electronics, 63(2), 1289–1298.
- Zavala-Rio, A., Aguinaga-Ruiz, E., and Santiba˜nez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs. Asian J. Contr, 13(3), 2137–2149.