Martinez Clark, Rigoberto | CCentro De Investigacion Cientifica Y Educacion Superior De Ensen |
Pliego Jimenez, Javier | Univ. Nacional Autonoma De Mexico |
Cruz-Hernández, César | Scientific Res. and Advanced Studies Center of Ensenada |
Resumen: The problem of decentralized formation control of a group of wheeled mobile robots is addressed in this paper. In order to cope with the formation control problem a strategy based on a master-slave scheme is adopted. It is assumed that only position measurements are available. Therefore, a nonlinear control algorithm in combination with a velocity observer is proposed. Simulation results are presented to show the performance of the proposed algorithm.
Leader-Follower Formation Control for Mobile Robots Based on Master-Slave Approach
Size: 379 KB
Total descargados hasta ahora
150 Downloads
¿Cómo citar?
Rigoberto Martínez-Clark, Javier Pliego-Jiménez & César Cruz-Hernandez. Leader-Follower Formation Control for Mobile Robots Based on Master-Slave Approach. Memorias del Congreso Nacional de Control Automático, pp. 158-163, 2018.
Palabras clave
Formation control, mobile robots, nonlinear control
Referencias
- Alonso-Mora, J., Baker, S., and Rus, D. (2017). Multirobot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research, 36(9), 1000–1021.
- Cowan, N., Shakerina, O., Vidal, R., and Sastry, S. (2003). Vision-based follow-the-leader. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), volume 2, 1796– 1801. IEEE.
- Fierro, R. and Lewis, F. (1997). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. Journal of Robotic Systems, 14(3), 149–163.
- Ge, X. and Han, Q.L. (2017). Distributed Formation Control of Networked Multi-Agent Systems Using a Dynamic Event-Triggered Communication Mechanism. IEEE Transactions on Industrial Electronics, 64(10), 8118–8127.
- Hu, D., Zhong, M., Zhang, X., and Yao, Y. (2014). SelfOrganized Aggregation Based on Cockroach Behavior in Swarm Robotics. 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, 349–354.
- Jiang, Z. and Nijmeijer, H. (1997). Tracking control of mobile robots: a case study in backstepping. Automatica, 33(7), 1393–1399.
- Kostic, D., Adinandra, S., Caarls, J., van de Wouw, N., and Nijmeijer, H. (2009). Collision-free tracking control of unicycle mobile robots. In Conference on Decision and Control, 5667–5672.
- Luviano-Juarez, A., Cortes-Romero, J., and SiraRamirez, H. (2015). Trajectory tracking control of a mobile robot through a flatness-based exact feedforward linearization scheme. Journal of Dynamic Systems Measurement and Control, 137(5), 1–8.
- Oh, K.K., Park, M.C., and Ahn, H.S. (2015). A survey of multi-agent formation control. Automatica, 53, 424– 440.
- Peng, L., Guan, F., Perneel, L., Fayyad-Kazan, H., and Timmerman, M. (2018). Decentralized Multi-Robot Formation Control with Communication Delay and Asynchronous Clock. Journal of Intelligent & Robotic Systems, 89(3-4), 465–484.
- van den Broek, T.H., van de Wouw, N., and Nijmeijer, H. (2009). Formation control of unicycle mobile robots: a virtual structure approach. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 8328–8333. IEEE.
- Wang, Q., Chen, Z., Liu, P., and Hua, Q. (2017). Distributed multi-robot formation control in switching networks. Neurocomputing, 270, 4–10.
- Yamaguchi, H., Arai, T., and Beni, G. (2001). A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous Systems, 36(4), 125–147.
- Yang Quan Chen and Zhongmin Wang (2005). Formation control: a review and a new consideration. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3181–3186. IEEE.