| J. Álvarez | Cinvestav |
| B. Castillo-Toledo | Cinvestav |
https://doi.org/10.58571/CNCA.AMCA.2025.014
Resumen: This paper introduces an impulsive observer for linear differential-algebraic equations systems with outputs available only at discrete sampling instants. By exploiting the Kronecker decomposition of the pencil (E,A) and modeling each sample as an impulse, we derive a discrete-time error recursion. A Lyapunov-based LMI framework is then formulated to enforce Schur-stability of the impulsive error. The resulting convex synthesis directly computes the observer gain, guaranteeing exponential convergence of the continuous-time estimation error. Numerical examples illustrate convergence behavior of the proposed impulsive observer.

¿Cómo citar?
Álvarez, J. & Castillo-Toledo, B. (2025). LMI-Based Impulsive Observers for Sampled-Output Linear Descriptor Systems. Memorias del Congreso Nacional de Control Automático 2025, pp. 80-85. https://doi.org/10.58571/CNCA.AMCA.2025.014
Palabras clave
Impulsive observer, DAE systems, Lyapunov, Sampled output, Linear matrix inequalities.
Referencias
- Alvarez, J., Servín, J., Díaz, J.A., and Bernal, M. (2022). Differential algebraic observer-based trajectory tracking for parallel robots via linear matrix inequalities. International Journal of Systems Science, 53(10), 2149–2164.
- Bernal, M., Sala, A., and González, A. (2025). LMIbased nonlinear observer design for a class of nonlinear differential algebraic equations (in press). Kybernetika.
- Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. SIAM.
Briat, C. (2016). Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints. Automatica, 74, 279–287. doi:10.1016/j.automatica.2016.08.001. - Dai, L. (1989). Singular Control Systems. Springer, London.
- Darouach, M. (2014). Observers and observer-based control for descriptor systems revisited. IEEE Transactions on Automatic Control, 59(5), 1367–1373.
- Darouach, M., Amato, F., and Alma, M. (2017). Functional observers design for descriptor systems via lmi: continuous and discrete-time cases. Automatica, 86, 216–219. doi:10.1016/j.automatica.2017.08.016.
- Dinh, T., Andrieu, V., Nadri, M., and Serres, U. (2015). Continuous–discrete time observer design for lipschitz systems with sampled measurements. IEEE Transactions on Automatic Control, 60(3), 787–792. doi:10.1109/TAC.2014.2329211.
- Duan, G.R. (2010). Analysis and design of descriptor linear systems, volume 23. Springer Science & Business Media.
- Gahinet, P., Nemirovski, A., Laub, A.J., and Chilali, M. (1995). LMI Control Toolbox. The MathWorks, Natick, MA, USA.
Golub, G.H. and Van Loan, C.F. (2013). Matrix Computations. Johns Hopkins University Press, 4th edition. - Guillén-Flores, C.P., Castillo-Toledo, B., García-Sandoval, J.P., Di Gennaro, S., and Alvarez, V.G. (2013). A reset observer with discrete/continuous measurements for a class of fuzzy nonlinear systems. Journal of the Franklin Institute, 350(8), 1974–1991.
- Huang, J., Che, H., Raissi, T., and Wang, Z. (2021). Functional interval observer for discretetime switched descriptor systems. IEEE Transactions on Automatic Control, 66(1), 123–130. doi:10.1109/TAC.2020.2989987.
- Jafari, E. and Binazadeh, T. (2020). Observer-based tracker design for discrete-time descriptor systems with constrained inputs. Journal of Process Control, 94, 26–35. doi:10.1016/j.jprocont.2020.03.001.
- Jaramillo, O., Castillo-Toledo, B., and Di Gennaro, S. (2020). Robust impulsive observer–based stabilization for uncertain nonlinear systems with sampled–output. IEEE Control Systems Letters, 5(3), 845–850.
- Koenig, D., Marx, B., and Varrier, S. (2016). Filtering and fault estimation of descriptor switched systems. Automatica, 63, 116–121. doi:10.1016/j.automatica.2015.10.016.
- Kunkel, P. and Mehrmann, V. (2006). Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, Z¨urich.
- Luzanilla, J.C.A., Alvarez, J., Moreno, C.D.A., Lauber, J., Cremoux, S., Simoneau-Buessinger, E., and Bernal, M. (2021). Novel solutions on model-based and modelfree robotic-assisted ankle rehabilitation. Archives of Control Sciences, 31(1), 5–27.
- Oucief, N., Tadjine, M., and Labiod, S. (2016). Adaptive observer-based fault estimation for a class of lipschitz nonlinear descriptor systems. Archives of Control Sciences, 26(3), 245–259. doi:10.1515/acsc-2016-0014.
- Perez, C. and Mera, M. (2015). Robust observer-based control of switched nonlinear descriptor systems with quantized and sampled outputs. Kybernetika, 51(4), 599–621. doi:10.14736/kyb-2015-4-0599.
- Portela, A., Bessa, I., M´arquez, R., and Bernal, M. (2025). A novel LMI-based design of rational control laws for a class of nonlinear systems modeled as differential algebraic equations. IEEE Control Systems Letters.
- Trefethen, L.N. and Bau, D. (1997). Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM).
- Yu, Y. and Shen, Y. (2018). Robust sampled-data observer design for lipschitz nonlinear systems. Kybernetika, 54(4), 699–718. doi:10.14736/kyb-2018-4-0699.
- Zhang, D. and Shen, Y. (2017). Continuous sampleddata observer design for nonlinear systems with time delay larger or smaller than the sampling period. IEEE Transactions on Automatic Control, 62(12), 5822–5837. doi:10.1109/TAC.2016.2638043.
- Zhang, D., Shen, Y., and Xia, X. (2016a). Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements. Kybernetika, 52(3), 441–460. doi:10.14736/kyb-2016-3-0441.
- Zhang, J., Shen, Y., and Xia, X. (2016b). Continuous observer design for a class of multi-output nonlinear systems with multi-rate sampled and delayed output measurements. Automatica, 75, 127–132. doi:10.1016/j.automatica.2016.09.028.
- Zhang, J., Wang, Z., Chadli, M., and Wang, Y. (2021). On prescribed-time functional observers of linear descriptor systems with unknown input. International Journal of Control, 94(4), 771–782. doi:10.1080/00207179.2020.1734512.
