Lizbeth Carrasco Gutiérrez | Centro de Investigacion y Cientifica y de Educacion Superior de Ensenada |
César Cruz-Hernández | Centro de Investigacion y Cientifica y de Educacion Superior de Ensenada |
Rigoberto Martinez Clark | Universidad Autonoma de Baja California |
Javier Pliego Jimenez | CONACYT – Centro de Investigacion y Cientifica y de Educacion Superior de Ensenada |
Resumen: Prey – predator relation is a natural dynamic system with a myriad of variations. For many years, research community tried to identify its rules. Based on the observations of different trophic chains, some mathematical models arised. The most cited model is the so called Lotka-Volterra. This paper considers a variation of this model for the design of a finite state machine (FSM) algorithm to represent this natural phenomenon in a group of low-cost mobile robots. This paper focuses on the effects of including displacement of the individuals and intraspecific competition among the predator population on the set of interaction rules. The FSM algorithm is evaluated through numerical simulations employing the physical simulation software V-Rep.
¿Cómo citar?
Lizbeth Carrasco Gutiérrez, Rigoberto Martinez Clark, Javier Pliego Jimenez & César Cruz-Hernández. Lotka-Volterra's Prey-Predator Model Interpretation in a Group of Low-Cost Mobile Robots. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
prey-predator, mobile robots, bio-inspired control, finite state machine
Referencias
- Barbosa, P. and Castellanos, I. (2005). Ecology of predator-prey interactions. Oxford University Press.
- Bitetti, D. and Santiago, M. (2008). Depredadores topes y cascadas troficas en ambientes terrestres. Ciencia hoy.
- Boccara, N. (2010). Modeling complex systems. Springer Science & Business Media.
- Cabezas Venegas, N.A. (2017). Población. factores que intervienen en la dinámica de población. variaciones de una población (competencia, predación, simbiosis).
- Chatterjee, A. and Pal, S. (2016). Interspecies competition between prey and two different predators with holling iv functional response in diffusive system. Computers & Mathematics with Applications, 71(2), 615–632.
- Chen, J. (2019). The predator-prey evolutionary robots system: from simulation to real world. Ph.D. thesis, Department of Computer Science, Faculty of Informatics, Vrije Universiteit . . . .
- Ferreras, P. (2015). Relaciones ecologicas de los depredadores. efectos del control de sus poblaciones. In IV Congreso Andaluz de caza – hacia un modelo de calidad cinegética.
- Gomez, J. and Vélez, C. (2009). Modelo presa-depredador y su contextualización en el ámbito nacional e internacional.
- K-TEAM (2011). Kilobot user manual. URL https://www.k-team.com.
- Koch, A.L. (1974). Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. Journal of Theoretical Biology, 44(2), 387–395.
- Lee, S.H. (2006). Predator’s attack-induced phase-like transition in prey flock. Physics Letters A, 357(4-5), 270– 274.
- Nishimura, S.I. (2002). A predator’s selection of an individual prey from a group. Biosystems, 65(1), 25–35.
- Nolfi, S. (2012). Co-evolving predator and prey robots. Adaptive Behavior, 20(1), 10–15.
- Nuñez Santiago, R. (2018). Análisis cualitativo de sistemas de ecuaciones diferenciales: aplicaciones a modelos de lotkavolterra n-dimensionales.
- Oganician, A., Antonio, J., et al. (2017). Modelo depredadorpresa de volterra-lotka.