Pineda-Uribe, Alejandro | Centro Nacional de Investigación y Desarrollo Tecnológico |
Guerrero-Ramírez, Gerardo | Centro Nacional de Investigación y Desarrollo Tecnológico |
Martinez-Barbosa, Alberto | Centro Nacional de Investigación y Desarrollo Tecnológico |
Adam-Medina, Manuel | Centro Nacional de Investigación y Desarrollo Tecnológico |
Guerrero-Ramírez, Esteban | Universidad Tecnológica de la Mixteca |
https://doi.org/10.58571/CNCA.AMCA.2023.076
Resumen: This paper presents the mathematical modeling of the three-phase squirrel cage induction motor and its driver, the DC bus, and a photovoltaic system comprised of photovoltaic cells and the DC/DC boost converter. The mathematical modeling is accomplished in two manners, using the laws of Physics and the Euler Lagrange approach. In addition, the mathematical modeling also considers the 𝒂𝒃𝒄 and 𝒒𝒅𝟎 reference frames. The mathematical models are validated through simulation in the Matlab/Simulink environment, programming the obtained equations and comparing them with a block model of the simulation environment.
¿Cómo citar?
Pineda-Uribe, Alejandro; Guerrero-Ramírez, Gerardo; Martinez-Barbosa, Alberto; Adam-Medina, Manuel; Guerrero-Ramírez, Esteban. Mathematical Modeling of a Three-Phase Induction Motor Fed by a Photovoltaic System. Memorias del Congreso Nacional de Control Automático, pp. 357-362, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.076
Palabras clave
Modelado e Identificación de Sistemas; Control de Sistemas No Lineales; Sistemas Electrónicos de Potencia
Referencias
- Abuashour, M. I., et al. (2018). Modelling, simulations and operational performance of a stand-alone hybrid wind/PV energy system supplying induction motor for pumping applications. J. Eng. Syst. Model. Simul., vol. (10), pp. 12-25.
- Beristáin, J. A., and Pérez, J. (2022). Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación. Iber. Aut. Inf. Ind., vol. (19), pp. 199-209.
- Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., and Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, vol. (2), pp. 17140.
- Errouha, M., and Derouich, A. (2019). Study and comparison results of the field oriented control for photovoltaic water pumping system applied on two cities in Morocco. Elect. Eng. Inform., vol. (8), pp. 1206-1212.
- Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., and Kim, K.-H. (2018). Solar energy: Potential and future prospects. Sustain. Energy Rev., vol. (82), pp. 894-900.
- Khan, A. A., Zaffar, N. A., and Ikram, M. J. (2023). DC-Link Ripple Reduction for Parallel Inverter Systems by a Novel Formulation Using Multiple Space Vector- Based Interleaving Schemes. Electronics, (12), pp. 1496.
- Krause, P.C., Wasynczuk, O., Sudhoff, S. D., and Pekarek, S. D. (2013). Analysis of electric machinery and drive systems. John Wiley & Sons:Hoboken, NJ, USA. Le Roux, P. F., and M. K. Ngwenyama. (2022). Static and Dynamic Simulation of an Induction Motor Using Matlab/Simulink. Energies, (15), pp. 3564.
- Linares-Flores, J., et al. (2019). Angular speed control of an induction motor via a solar powered boost converter-voltage source inverter combination. Energy, vol. (166), pp. 326-334.
- Marfoli, A., Nardo, M. D., Degano, M., Gerada, C., and Chen, W. (2021). Rotor Design Optimization of Squirrel Cage Induction Motor – Part I: Problem Statement. IEEE Tran. on En. Conv., vol. (36), pp. 1271-1279.
- Martinez-Barbosa, A., et al. (2023). Modeling and Control of an Air Conditioner Powered by PV Energy and the Grid Using a DC Microgrid. Processes, vol. (11), pp. 1547.
- Paramo-Balsa, P., Roldan-Fernandez, J. M., Gonzalez-Longatt, F., and Burgos-Payan, M. (2022). Measurement of the Speed of Induction Motors Based on Vibration with a Smartphone. Sci., vol. (12), pp. 3371.
- Rodríguez, I. V. H., Ramírez, G. V. G., Beltrán, C. D. G., Medina, M. A, Carmen, F. J. T, and Ortíz, E. R. (2019). Modelado del motor de inducción en la formulación Euler-Lagrange considerando las pérdidas del núcleo. Memorias del C. Nac. De Control Aut., vol. (2), pp. 653-658.