Oscar Vázquez-Ricaño | Universidad Veracruzana |
Yolanda Cocotle-Ronzón | Universidad Veracruzana |
Miguel A. Morales-Cabrera | Universidad Veracruzana |
Eliseo Hernandez-Martinez | Universidad Veracruzana |
https://doi.org/10.58571/CNCA.AMCA.2022.073
Resumen: Xylitol is widely used in the pharmaceutical and food industries since it has cariogenic properties and low caloric value compared to sucrose. In recent decades, its demand has increased, which has motivated the generation of alternatives for its production. The biotechnological route is an attractive alternative since in addition to reducing production costs, it uses lignocellulosic hydrolysates from agro-industrial residues as raw material. However, due to the inherent variability in the composition of the waste, the implementation of the process is not a simple task, i. e., the determination of the operating conditions that maximize production yield requires a broad experimental design. In this sense, mathematical modeling can help reduce experimental work, and allows for predicting and evaluating the dynamic behavior of key variables, making it a useful tool for the implementation of process optimization and control schemes. Therefore, the objective of this work is to propose a generalized mathematical model that can be adapted to different study cases (i.e., different substrates and microorganism strains), operating conditions, and fermenter configuration. The results show high determination coefficients R2 > 0.90 for each case study, indicating that the proposed model is easily adaptable to different substrates and operating conditions. In addition, the model allows the incorporation of different effects such as pH, temperature, and agitation.
¿Cómo citar?
Oscar Vázquez-Ricaño, Yolanda Cocotle-Ronzón, Miguel A. Morales-Cabrera & Eliseo Hernandez-Martinez. Mathematical modeling of the biotechnological production of xylitol from hydrolysates of
agro-industrial waste. Memorias del Congreso Nacional de Control Automático, pp. 331-336, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.073
Palabras clave
Procesos Biotecnológicos
Referencias
- Aranda-Barradas, J., Delia, M. & Riba, J. Kinetic study and modelling of the xylitol production using Candida parapsilosis oxygen-limited culture conditions. Bioprocess Engineering 22, 219–225 (2000).
- Bautista, R.Y. (2019). Determinación de las condiciones de fermentación para la producción de xilitol a partir de un hidrolizado de los residuos de la planta del plátano. Tesis. Facultad de Ingeniería Química. Universidad Veracruzana, Veracruz, México.
- Carvalho, W., Santos, J. C., Canillha. L-. Silva, S. S., Perego, P., & Converti, A. (2005). Xylitol production from sugarcane bagasse hydrolysate: Metabolic behaviour of Candida guillermondii cells entrapped in Ca-alginate. Biochemical Engineering Journal, 25(1), 25-31
- Coimbra, Maria do Carmo & Rodrigues, Alírio & Rodrigues, Jaime & Robalo, Rui & Almeida, Rui. (2016). Moving Finite Element Method: Fundamentals and Applications in Chemical Engineering.
- Dorantes-Landa, D.N., Cocotle-Ronzón, Y., Morales-Cabrera, M.A. and Hernández-Martínez, E. (2020), Modeling of the xylitol production from sugarcane bagasse by immobilized cells. J Chem Technol Biotechnol, 95: 1936-1945.
- González-Sánchez, M. E., Pérez-Fabiel, S., Wong-Villarreal, A., Bello-Mendoza, R., & Yañez-Ocampo, G. (2015). Residuos agroindustriales con potencial para la producción de metano mediante la digestión anaerobia. Revista Argentina de Microbiología, 47(3), 229–235.
- Liaw Wen-Chang, Chee-Shan Chen, Wen-Shion Chang, Kuan-Pin Chen, Xylitol Production from Rice Straw Hemicellulose Hydrolyzate by Polyacrylic Hydrogel Thin Films with Immobilized Candida subtropicales WF79, Journal of Bioscience and Bioengineering, Volume 105, Issue 2, 2008, Pages 97-105, ISSN 1389-1723,
- Lugani, Y., & Sooch, B. S. (2020). Fermentative production of xylitol from a newly isolated xylose reductase producing Pseudomonas putida BSX-46. LWT, 109988.
- Mohamad, N. L., Mustapa Kamal, S. M., Mokhtar, M. N., Husain, S. A., & Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xilitol fermentation using Candida tropicalis. Biochemical Engineering Journal, 111, 10–17.
- Ping, Y., Ling, H.-Z., Song, G., & Ge, J.-P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.
- Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304–3308.
- Rao, R. S., Bhadra, B., & Shivaji, S. (2007). Isolation and Characterization of Xylitol-Producing Yeasts from the Gut of Colleopteran Insects. Current Microbiology, 55(5), 441–446.
- Silva, C. J. S.., & Roberto, I. C. (2001). Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochemistry, 36(11), 1119–1124.
- Silva, D. D. V., Dussán, K. J., Idarraga, A., Grangeiro, L., Silva, S. S., Cardona, C. A.,Felipe, M. G. A. (2020). Production and purification of xylitol by Scheffersomyces amazonenses via sugarcane hemicellulosic hydrolysate. Biofuels, Bioproducts and Biorefining.
- Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H. H. C., & Chisti, Y. (2005). A model of xylitol production by the yeast Candida mogii. Bioprocess and Biosystems Engineering, 28(3), 175–183.
- Verde, M. V., de Mancilha, I. M., de Almeida e Silva, J. B., & Solenzar, A. I. N. (2008). Métodos de purificación de hidrolizados de bagazo de caña de azúcar para la obtención de xilitol. Purification methods of sugarcane bagasse hydrolysates for xilitol. Ciencia y Tecnología Alimentaria, 5(2), 129–134.
- Xu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology.
- Zhu, J., H. Z. Ling, D. Zhao, J. P. Ge, W. X. Ping, W. L. Shen, and G.Song. 2014. Xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Brewing Technology2: 16–19.