Gomez Gomez, Jesus Ruben | Universidad Autónoma de Ciudad Juárez |
Ponce, Israel Ulises | Universidad Autónoma de Ciudad Juárez |
Vidal Portilla, Luis Ricardo | Universidad Autónoma de Ciudad Juárez |
https://doi.org/10.58571/CNCA.AMCA.2023.042
Resumen: This paper introduces a methodology for deriving state feedback gains aimed at enhancing the lateral control of Autonomous Vehicles (AV). Autonomous Vehicles represent a groundbreaking technological advancement falling under the category of intelligent transportation systems. In developed nations, AVs are regarded as a potential solution to mitigate injuries resulting from road accidents. The Society of Automotive Engineers (SAE) has introduced a comprehensive framework for classifying vehicle autonomy on a scale ranging from 0 to 5, with current Tesla vehicles currently achieving a level 3 rating. A level 5 classification denotes a fully autonomous vehicle devoid of any operational constraints. The AV system encompasses three distinct modules: Perception, Reference Generation, and Control. Among these, the Control module plays a pivotal role in ensuring the autonomy of the vehicle. Within the realm of existing literature, various lateral control systems have been documented. However, those relying on state feedback mechanisms have failed to provide a well-defined and systematic methodology for acquiring the requisite control gains. Furthermore, these approaches have not addressed the issue of varying vehicle speeds in the context of gain determination. Hence, the primary objective of this article is to present a comprehensive methodology for the systematic derivation of appropriate control gains for the AV lateral control system.
¿Cómo citar?
Gomez Gomez, Jesus Ruben; Ponce, Israel Ulises; Vidal Portilla, Luis Ricardo. Methodology to Obtain the State Feedback Gains for Lateral Control of the Autonomous Vehicles. Memorias del Congreso Nacional de Control Automático, pp. 406-412, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.042
Palabras clave
Control de Sistemas Lineales; Control Clásico; Tecnología para Control
Referencias
- Boudali, M., Orjuela, R., and Basset, M. (2017). A Comparison of Two Guidance Strategies for Autonomous Vehicles. IFAC-PapersOnLine, 50(1), 12539-12544. doi:10.1016/j.ifacol.2017.08.2192. URL https://doi.org/10.1016/j.ifacol.2017.08.2192.
- Boudali, M., Orjuela, R., Basset, M., and Attia, R. (2018). Emergency Autonomous Vehicle Guidance under Steering Loss. IEEE Intelligent Vehicles Symposium, Proceedings, 2018-June(Iv), 2078-2083. doi:10.1109/IVS.2018.8500539.
- Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., and Hrovat, D. (2007). Predictive active steering control for autonomous vehicle systems. IEEE Transactions on Control Systems Technology, 1-14.
- Hıjar, M., Arredondo, A., Carrillo, C., and Sol´orzano, L. (2004). Road traffic injuries in an urban area in mexico: An epidemiological and cost analysis. Accident Analysis Prevention, 36(1).
- Izquierdo-Reyes, J., Curiel-Ramirez, L.A., Bustamante-Bello, R., and Ramirez-Mendoza, R.A. (2018). Perspective of autonomous driving in mexico. doi:10.1109/ICMEAE.2018.00034.
- Kapania, N. and Gerdes, J. (2015). Design of a feedbackfeedforward steering controller for accurate path tracking and stability at the limits of handling. Vehicle System Dynamics, 53, 1-18. doi:10.1080/00423114.2015.1055279.
- Kritayakirana, K. and Gerdes, J.C. (2012). Using the centre of percussion to design a steering controller for an autonomous race car. Vehicle System Dynamics, 50(sup1), 33–51. doi:10.1080/00423114.2012.672842. URL https://doi.org/10.1080/00423114.2012.672842.
- Laghmara, H., Boudali, M.T., Laurain, T., Ledy, J., Orjuela, R., Lauffenburger, J.P., and Basset, M. (2019). Obstacle avoidance, path planning and control for autonomous vehicles. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 529-534. doi:10.1109/IVS.2019.8814173.
- Lekkas, A. (2014). Guidance and Path-Planning Systems for Autonomous Vehicles. Ph.D. thesis.
- Li, X., Sun, Z., Cao, D., Liu, D., and He, H. (2017). Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 87, 118-137. doi:https://doi.org/10.1016/j.ymssp.2015.10.021. URL https://www.sciencedirect.com/science/article/pii/S0888327015004811. Signal Processing and Control challenges for Smart Vehicles.
- Li, Y., Ni, J., Hu, J., and Pan, B. (2018). The design of driverless vehicle trajectory tracking control strategy. IFAC-PapersOnLine, 51(31), 738-745. doi:https://doi.org/10.1016/j.ifacol.2018.10.137. URL https://www.sciencedirect.com/science/article/pii/S2405896318326016. 5th IFAC Conference on Engine and Powertrain Control, Simulation and Modeling E-COSM 2018.
- Martínez, D., Sánchez-Aguirre, D., and Demmler, M. (2018). Accidentes viales en México y su relación con el horario de verano road accidents in mexico and its relationship with daylight saving time. doi:10.13140/RG.2.2.13733.81127.
- Nadafianshahamabadi, R., Tayarani, M., and Rowangould, G. (2021). A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts. Journal of Transport Geography. Rajamani, R. (2012). Vehicle Dynamics and Control. Mechanical Engineering Series, Springer US, second edition.