Urquiza Castro, Alejandro | Instituto Politécnico Nacional |
Marquez-Rubio, J. Francisco | Instituto Politécnico Nacional |
Del Muro Cuéllar, Basilio | Instituto Politécnico Nacional |
Vazquez-Guerra, Rocio Jasmin | Instituto Politécnico Nacional |
Resumen: This work presents a model-based predictive control (MPC) scheme using a multi-predictor for high-order linear systems with an unstable pole with long delay in direct loop, the stability analysis of this type of system is difficult due to the delay size considered. To solve the stabilization problem, as a first step a digital multi-predictor scheme is presented that estimates the intermediate variables of the process that will later be used for the design of an MPC controller to control the plant. The convergence of the multi-predictor scheme is based on a static output feedback, for this reason, the conditions that ensure the stability of an output feedback scheme are presented. The performance of the method is shown through numerical examples in simulation, likewise, some advantages of the methodology with respect to other controllers are illustrated.

¿Cómo citar?
A. Urquiza Castro, J.F. Marquez Rubio , B. del-Muro-Cuellar & R.J. Vazquez-Guerra. Model Based Predictive Control (MPC) Applied to a Multi-Predictor for High Order Delayed Systems with an Unstable Pole. Memorias del Congreso Nacional de Control Automático, pp. 237-242, 2021.
Palabras clave
Linear systems, linear system observers, systems with time delays, predictive
control
Referencias
- Abraham, A., & Pappa, N. (2016). An optimal centralized predictive control scheme applied to a Non-Square MIMO benchmark problem. IFAC-PapersOnLine, 49(13), 59–64.
- A.S. Rao, M. Chidambaram, Enhanced smith predictor for unstable processes with time delay, Ind. Eng. Chem. Res. 44 (22) (2005) 8291–8299.
- Camacho, E. F., & Alba, B. C. (2013). Model Predictive Control (Advanced Textbooks in Control and Signal Processing) (English Edition) (2.a ed.). Springer.
- Clarke, D., Mohtadi, C., & Tuffs, P. (1987). Generalized predictive control—Part I. The basic algorithm. Automatica, 23(2), 137–148.
- del-Muro-Cuéllar, B., Márquez-Rubio, J. F., VelascoVilla, M., & Jesús Alvarez-Ramírez, J. D. (2012). On ´ the Control of Unstable First Order Linear Systems with Large Time Lag: Observer Based Approach. European Journal of Control, 18(5), 439–451.
- Giraldo, S. A., Melo, P. A., & Secchi, A. R. (2019). Tuning of Model Predictive Control Based on Hybrid Optimization. IFAC-PapersOnLine, 52(1), 136–141.
- Hernández-Arroyo, E., Díaz-Rodríguez, J. L., & Pinzón Ardila, O. (2014). Estudio del comportamiento de un Control MPC [Control Predictivo Basado en el Modelo] comparado con un Control PID en una Planta de Temperatura. REVISTA FACULTAD DE INGENIER´IA, 23(37), 45.
- Hernández–Pérez, M., Fragoso–Rubio, V., Velasco–Villa, M., del Muro–Cu´ellar, B., Márquez–Rubio, J., & Puebla, H. (2020). Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor. Journal of Process Control, 92, 98–107.
- Lee, S. C., Wang, Q. G.,& Xiang, C. (2010). Stabilization of all-pole unstable delay processes by simple controllers. Journal of Process Control, 20(2), 235–239.
- Matausek, M., & Micic, A. (1999). On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 44(8), 1603–1606.
- MacIejowski, J. M. (2001). Predictive Control With Constraints: With Constraints. Prentice Hall College Div.
- O.J.M. Smith, Closer control of loops with deadtime, Chem. Eng. Prog. 53 (5) (1957) 217–219.
- Oravec, J., Jiang, Y., Houska, B., & Kvasnica, M. (2017). Parallel Explicit MPC for Hardware with Limited Memory. IFAC-PapersOnLine, 50(1), 3301–3306.
- Rivas-Perez & J. Sotomayor Moriano (2014). Control Predictivo Generalizado de las Variables Críticas de una Unidad de Osmosis Inversa. CLCA 2014.
- Rivas-Perez, R., Sotomayor-Moriano, J., & Perez-Zúñiga, C. (2017). Adaptive Expert Generalized Predictive Multivariable Control of Seawater RO Desalination Plant for a Mineral Processing Facility. IFAC-PapersOnLine, 50(1), 10244–10249.
- T., & Bequette, B. (2002). Process Control: Modeling, Design and Simulation (Illustrated ed.). Pearson.
- Wang, L. (2010). Model Predictive Control System Design and Implementation Using Matlab(r). Springer.
- W. Michiels, D. Roose, Time-delay compensation in unstable plants using delayed state feedback, in: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, Vol. 2, IEEE, 2001, pp. 1433–1437