L. Gómez-Coronel | Tecnológico Nacional de México, I.T. Tuxtla Gutiérrez |
I. Santos-Ruiz | Tecnológico Nacional de México, I.T. Tuxtla Gutiérrez |
F.R. López-Estrada | Tecnológico Nacional de México, I.T. Tuxtla Gutiérrez |
L. Torres | Universidad Nacional Autónoma de México |
J.A. Delgado-Aguiñaga | Universidad del Valle de México, |
https://doi.org/10.58571/CNCA.AMCA.2022.015
Resumen: This paper addresses the problem of parameter calibration in pipelines based on a Genetic Algorithm (GA). The parameters under consideration are the pipe roughness and the minor loss coefficient caused by fittings like valves, elbows, and couplings. These parameters cannot be directly measured, and their accuracy plays an essential role in successfully implementing leak diagnosis algorithms. The proposed GA generates calibrated values for both pipe roughness and minor loss coefficient by minimizing the root mean squared error (RMSE) in predicting pressures. The method was implemented in MATLAB and the calibration was validated in an experimental network by comparing the pressure heads measured at the nodes of the network and those from the calibrated model simulated with EPANET.
¿Cómo citar?
Gómez-Coronel, L., Santos-Ruiz, I., Torres, L., López-Estrada, F. & Delgado-Aguiñaga, J. Model Calibration for a Hydraulic Network Using Genetic Algorithms. Memorias del Congreso Nacional de Control Automático, pp. 146-151, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.015
Palabras clave
Modelado e Identificación de Sistemas; Cómputo para Control; Detección y Aislamiento de Fallas
Referencias
- Do, N.C., Simpson, A.R., Deuerlein, J.W., and Piller, O. (2016). Calibration of water demand multipliers in water distribution systems using genetic algorithms. Journal of water resources planning and management, 142(11), 04016044.
- Drisya, J. and Sathish Kumar, D. (2018). Automated calibration of a two-dimensional overland flow model by estimating manning’s roughness coefficient using genetic algorithm. Journal of Hydroinformatics, 20(2), 440–456.
- Eliades, D.G., Kyriakou, M., Vrachimis, S., and Polycarpou, M.M. (2016). EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB.
- Heydari, S., Mamizadeh, J., Sarvarian, J., and Ahmadi, G. (2020). Optimization of water distribution networks using developed binary genetic algorithm and hydraulic model software. Journal of Applied Research in Water and Wastewater, 7(1), 30–35.
- Martínez-Bahena, B., Cruz-Ch´avez, M.A., Avila-Melgar, E.Y., Cruz-Rosales,M.H., and Rivera-Lopez, R. (2018). Using a genetic algorithm with a mathematical programming solver to optimize a real water distribution system. Water, 10(10), 1318.
- Mirjalili, S. (2019). Genetic algorithm. In Evolutionary algorithms and neural networks, 43–55. Springer.
- Nicolini, M. and Falcomer, L. (2020). Genetic algorithm for calibration and leakage identification in water distribution system. In 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), 273–276. IEEE.
- Rossman, L.A., Woo, H., Tryby, M., Shang, F., Janke, R., and Haxton, T. (2020). EPANET 2.2 User Manual. Technical Report EPA/600/R-20/133, U.S. Environmental Protection Agency, Washington, DC.
- Santos-Ruiz, I., López-Estrada, F.R., Puig, V., Torres, L., Valencia-Palomo, G., and Gómez -Peñate, S. (2021). Optimal estimation of the roughness coefficient and friction factor of a pipeline. Journal of Fluids Engineering, 143(5).
- Santos-Ruiz, I., López-Estrada, F.R., Puig, V., and Valencia-Palomo, G. (2020). Simultaneous optimal estimation of roughness and minor loss coefficients in a pipeline. Mathematical and Computational Applications, 25(3), 56.