Vieyra Valencia, Natanael | UNAM |
Maya-Ortiz, Paul | UNAM |
Castro González, Luis Miguel | UNAM |
Resumen: El amplio uso de la generación distribuida y la incursión de las microrredes (MR) sugiere la implementación de un estimador de estados a nivel de baja tensión. Con base a la información proporcionada por el estimador, los centros de control (CC) ejecutan tareas importantes de control y planificación. Con el objetivo de contar con un modelo no lineal que permita capturar los diferentes fenómenos dinámicos de una MR aislada. En este artículo se propone un modelo algebrodiferencial de una MR que incluye aerogeneradores de velocidad variable y generación hidroeléctrica; así mismo se considera un esquema de control que permite reducir los cambios en la frecuencia, además de lograr la regulación de voltaje. Los resultados muestran que el modelo captura diferentes fenómenos ocasionados principalmente por variaciones de carga, viento, entre otro tipo de perturbaciones.

¿Cómo citar?
Natanael Vieyra, Paul Rolando Maya Ortiz & Luis M. Castro. Modelado Dinámico de Microrredes con Generación Eólica: Enfoque Práctico. Memorias del Congreso Nacional de Control Automático, pp. 524-529, 2018.
Palabras clave
Estimación de estados, Generador doblemente alimentado, Generador síncrono, Microrred aislada
Referencias
- Abur, A. and Exposito, A.G. (2004). Power system state estimation: theory and implementation. CRC press.
- Acha, E., Fuerte-Esquivel, C.R., Ambriz-Perez, H., and Angeles-Camacho, C. (2004). FACTS: modelling and simulation in power networks. John Wiley & Sons.
- Ackermann, T. (2005). Wind power in power systems. John Wiley & Sons.
- Ahshan, R., Iqbal, M., Mann, G.K., and Quaicoe, J.E. (2013). Modeling and analysis of a micro-grid system powered by renewable energy sources. The Open Renewable Energy Journal, 6(1), 7–22.
- Anaya-Lara, O., Jenkins, N., Ekanayake, J.B., Cartwright, P., and Hughes, M. (2011). Wind energy generation: modelling and control. John Wiley & Sons.
- Barklund, E., Pogaku, N., Prodanovic, M., HernandezAramburo, C., and Green, T.C. (2007). Energy management system with stability constraints for standalone autonomous microgrid. In System of Systems Engineering, 2007. SoSE’07. IEEE International Conference on, 1–6. IEEE.
- Choi, S. and Meliopoulos, A. (2016). Effective realtime operation and protection scheme of microgrids using distributed dynamic state estimation. IEEE Transactions on Power Delivery.
- Dib, W., Barabanov, A., Ortega, R., and LamnabhiLagarrigue, F. (2008). On transient stability of multi–machine power systems: a globally convergent controller for structure preserving models. In Proc. of the IFAC World Congress, Seoul.
- Grainger, J.J. and Stevenson, W.D. (1994). Power system analysis. McGraw-Hill.
- Holdsworth, L., Wu, X., Ekanayake, J.B., and Jenkins, N. (2003). Comparison of fixed speed and doublyfed induction wind turbines during power system disturbances. IEE Proceedings-Generation, Transmission and Distribution, 150(3), 343–352.
- Jiayi, H., Chuanwen, J., and Rong, X. (2008). A review on distributed energy resources and microgrid. Renewable and Sustainable Energy Reviews, 12(9), 2472–2483.
- Katiraei, F., Iravani, M., and Lehn, P. (2007). Smallsignal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET generation, transmission & distribution, 1(3), 369–378.
- Katiraei, F. and Iravani, M.R. (2006). Power management strategies for a microgrid with multiple distributed generation units. IEEE transactions on power systems, 21(4), 1821–1831.
- Katiraei, F., Iravani, R., Hatziargyriou, N., and Dimeas, A. (2008). Microgrids management. IEEE power and energy magazine, 6(3).
- Katiraei, F., Iravani, M.R., and Lehn, P.W. (2005). Microgrid autonomous operation during and subsequent to islanding process. IEEE Transactions on power delivery, 20(1), 248–257.
- Kundur, P., Balu, N.J., and Lauby, M.G. (1994). Power system stability and control, volume 7. McGraw-hill New York.
- Lasseter, R.H. (2007). Microgrids and distributed generation. Journal of Energy Engineering, 133(3), 144–149.
- Li, Y., Xu, Z., and Meng, K. (2017). Optimal power sharing control of wind turbines. IEEE Transactions on Power Systems, 32(1), 824–825.
- Lopes, J.P., Moreira, C., and Madureira, A. (2006). Defining control strategies for microgrids islanded operation. IEEE Transactions on power systems, 21(2), 916–924.
- Meng, W., Wang, X., and Liu, S. (2017). Distributed load sharing of an inverter-based microgrid with reduced communication. IEEE Transactions on Smart Grid.
- Monticelli, A. (1999). State estimation in electric power systems: a generalized approach, volume 507. Springer Science & Business Media.
- Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., Cañizares, C.A., Iravani, R., Kazerani, M., Hajimiragha, A.H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., et al. (2014). Trends in microgrid control. IEEE Transactions on smart grid, 5(4), 1905–1919.
- Rafian, M., Sterling, M., and Irving, M. (1987). Realtime power system simulation. In IEE Proceedings C (Generation, Transmission and Distribution), volume 134, 206–223. IET.
- Sauer, P.W. and Pai, M. (1997). Power system dynamics and stability. Urbana, 51, 61801.
- Shahabi, M., Haghifam, M., Mohamadian, M., and Nabavi-Niaki, S. (2009). Microgrid dynamic performance improvement using a doubly fed induction wind generator. IEEE Transactions on Energy Conversion, 24(1), 137–145.
- Slootweg, J., De Haan, S., Polinder, H., and Kling, W. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on power systems, 18(1), 144–151.
- Xu, Y., Zhang, W., Liu, W., Wang, X., Ferrese, F., Zang, C., and Yu, H. (2014). Distributed subgradientbased coordination of multiple renewable generators in a microgrid. IEEE Transactions on Power Systems, 29(1), 23–33.