González, Oscar A. | TecNM/Inst. Tecnológico De La Laguna |
González-Sierra, Jaime | CONACyT-TECNM/Inst. Tecnológico De La Laguna |
Dzul, Alejandro | TECNM/Inst. Tecnológico De La Laguna |
Hernandez-Martinez, Eduardo Gamaliel | Univ. Iberoamericana |
Paniagua-Contro, Pablo | Univ. Iberoamericana Ciudad De México |
Resumen: Este trabajo está enfocado en la obtención de un modelo matemático basado en distancia y ángulo para un sistema multi-agente, conformado por dos robots móviles del tipo diferencial, utilizando el esquema líder-seguidor. Dicho modelo matem'atico se obtiene a partir del modelo cinem'atico de los robots m'oviles. Posteriormente, se presenta una estrategia de control, bajo el enfoque de linealización por retroalimentación dinámica, la cual permite al agente seguidor mantener una distancia y un ángulo deseado con respecto al agente líder. Las simulaciones numéricas muestran el desempeño del controlador y son validadas experimentalmente.
¿Cómo citar?
.O. González-Medina, J. González-Sierra, A. Dzul, E.G. Hernández-Martínez & P. Paniagua-Contro. Modelado y Control de un Esquema Líder-Seguidor Basado en Distancia y Ángulo. Memorias del Congreso Nacional de Control Automático, pp. 382-387, 2018.
Palabras clave
Sistema multi-robot, Control de formación, Líder-seguidor, Robot diferencial
Referencias
- Ahmadi, S. and Werner, H. (2016). Cascaded formation control using angle and distance between agents with orientation control part 1 and part 2. International Conference on Control, Belfast, U. K.
- Balch, T. and Arkin, C. (1998) Behavior-based formation control for multirobot teams. IEEE Trans. On Robotics and Automation, Vol. 14, No. 6, pages 926-939.
- Brockett, R. W. (1983) Asymptotic stability and feedback stabilization. Differential Geometry Control Theory.
- Desai, J., Ostrowski, J. and Kumar, V. (1998) Controlling formations of multiple mobile robots. Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pages 2864-2869.
- Desai, J., Ostrowski, J. and Kumar, V. (2001) Modeling and Control of Formations of Nonholonomic Mobile Robots. Proc. of the 2001 IEEE Trans. on Robotics and Automation, Vol. 17, No. 6, pages 905-908.
- Gazi, V. (2015) Swarm aggregations using artificial potential and sliding-mode control. IEEE Trans. On Robotics, Vol. 21, No. 6, pages 1208-1214.
- Hamann, J.C., Heil, R., Spears, W.M. and Spears, D.F. (2004). Distributed, physics-based control of swarms of vehicles (2004). Autonomous Robots, Vol. 17, No.2-3, pages 137-162.
- Kang, S.M., Park, M.C., Lee, B.H. and Ahn, H.S. (2014). Distance-based formation control with a single moving leader (2014). American Control Conference, Portland, Oregon, USA, pages 305-310.
- Khaled, A. and Youmin, Z. (2015) Formation Control of Multiple Quadrotors Based on Leader-Follower Method. Proc. of the 2015 IEEE Int. Conf. on Unmanned Aircraft Systems, Denver, Colorado, USA, pages 1037- 1042.
- Lopez-Gonzalez, A., Ferreira, E. D., Hernandez-Martinez, E.G., Flores-Godoy, J.J., Fernandez-Anaya, G. and Paniagua-Contro, P. (2016). Multi-robot formation control using distance and orientation. Advanced Robotics, Vol. 30, No.14, pages 1-13.
- Mastellone, S., Stipanovic, D., Graunke, C., Intlekofer, K. and Spong, M. (2007). Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments. The International Journal of Robotics Research, Vol. 27, No. 1, pages 107-126.
- Oh, K. K. and Ahn, H. S. (2011). Formation control of mobile agents based on inter-agent distance dynamics (2011). Automatica, Vol. 47, No. 10, pages 2307-2312.
- Rodríguez -Cortés, H. and Aranda-Bricaire, E. (2007). Observer based trajectory tracking for a wheeled mobile robot (2007). Proc. of the 2007 American Control Conference, Nueva York, USA, pages 991-996.
- Sakurama, K., Kosaka, Y. and Nishida, S. (2018). Formation control of swarms robots with multiple proximity distance sensors. (2018). Int. Journal of Control Automation and Systems, Vol. 16, No. 1, pages 16-26.
- Vallejo-Alarc´on, M.A., Castro-Linares, R. and VelascoVilla, M. (2015). Unicycle-Type Robot & Quadrotor Leader-Follower Formation Backstepping Control. IFAC, Vol. 48, No. 19, pages 51-56.
- Wiech, J., Eremeyev, V.A. and Giorgio, I. (2018). Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following. (2018). Continuum Mech. Thermodyn, Vol. 30, No. 5, pages 1091-1102.
- Yamaguchi, H. (2003). A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operation. (2003). Robotics and autonomous systems, Vol. 43, No. 14, pages 257-282.
- Ze-su, C., Jie, Z. and Jian, C. (2012). Formation Control and Obstacle Avoidance for Multiple Robots Subject to Wheel-Slip. International Journal of Advanced Robotic System, Vol. 9, No. 5, pages 1-15.