Reynaldo Ortiz | CINVESTAV |
Belem Saldivar | CINVESTAV |
Sabine Mondié | CINVESTAV |
https://doi.org/10.58571/CNCA.AMCA.2022.057
Resumen: Integral delay equations (IDE) have several applications, they can be found in mathematical models of population and propagation of infectious diseases. Many of these models are sets of non-linear integral delay equations similar to the classical SEIR models, but with the advantage of simplifying the number of equations with a simple change of variable. An alternative equation is the well known renewal equation which can model both demographics and infectious diseases, we focus on the disease model and establish the equivalence between the versions with a single finite delay and the one with multiple delays, both obtained from a histogram of relative frequencies of tracking data of the infected people. We compare their Lyapunov matrices and the stability analysis when the reproductive number is in matrix form.
¿Cómo citar?
Ortiz, R., Saldivar, B. & Mondié, S. Modeling Infectious Diseases via Integral Delay Equations. Memorias del Congreso Nacional de Control Automático, pp. 374-379, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.057
Palabras clave
Procesos Biológicos; Modelado e Identificación de Sistemas
Referencias
- Champredon, D. y Dushoff, J. (2017). Intrinsic and realized generation intervals in infectious-disease transmission. the royal society publishing, 282.
- Champredon, D., Dushoff, J., y Earn, D.J.D. (2018). Equivalence of the erlang-distributed seir epidemic model and the renewal equation. SIAM Journal on Applied Mathematics, 78(6), 3258–3278.
- Coale, A.J. (1972). The growth and structure of human populations: A mathematical investigation. Princeton University Press, Princeton, New Jersey.
- Cooke, K.L. y Kaplan, J.L. (1976). A periodicity threshold theorem for epidemic and population growth. Mathematical Biosciences, 31, 87–104.
- Euler, L. (1760). Recherches g´en´erales sur la mortalite et la multiplication du genre humain. Mem.Acad. R. Sci. Belles Lett., 16, 144–164.
- Fodor, Z., Katz, S.D., y Kovacs, T.G. (2020). Why integral equations should be used instead of differential equations to describe the dynamics of epidemics. URL https://arxiv.org/abs/2004.07208v2.
- Heesterbeek, J.A.P. (1996). The concept of R0 in epidemic theory. Statistica Neerlandica, 50(1), 89 – 110.
- Kermack, W.O. y McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721.
- Kharitonov, V.L. (2013). Time-delay systems: Lyapunov functionals and matrices. Birkh¨auser, Basel.
- London, W.P. y Yorke, J.A. (1973). Recurrent outbreaks of measles chickenpox and mumps. American Journal of Epidemiology, 98(6), 453–468.
- Lotka, A.J. (1907). Relation between birth rates and death rates. Science, 26, 21–22.
- Ortiz, R., Del Valle, S., Egorov, A., y Mondié, S. (2020). Necessary stability conditions for integral delay systems. IEEE Transactions on Automatic Control, 65(10), 4377–4384.
- Ortiz, R., Egorov, A., y Mondi´e, S. (2022a). Lyapunov matrices for integral delay systems with piecewise constant kernel. Submitted to 17th IFAC Workshop on Time Delay Systems TDS 2022.
- Ortiz, R., Egorov, A., y Mondi´e, S. (2022b). Necessary and sufficient stability conditions for integral delay systems. Int. J Robust Nonlinear Control, 32(6), 3152–3174.
- Ortiz, R. y Mondi´e, S. (2019). On the Lyapunov matrix for integral delay systems with a class of general kernel. IFAC-PapersOnLine, 52(18), 91 – 96. 15th IFAC
- Workshop on Time Delay Systems TDS 2019. Park, S.W., Champredon, D., y Dushoff, J. (2020). Inferring generation-interval distributions from contacttracing data. J. R. Soc. Interface, 17, 1–12.
- Park, S.W., Champredon, D., Weitz, J.S., y Dushoff, J. (2019). A practical generation-interval-based approach to inferring the strength of epidemics from their speed. Epidemics, 27, 12–18.
- Smith, H. (1978). Periodic solutions for a class of epidemic equations. Journal of mathematical análisis and applications, 64, 467–479.
- Vazquez, A. (2021). Exact solution of infection dynamics with gamma distribution of generation intervals. Phys. Rev. E, 103, 1 – 6.
- Vyhl´ıdal, T. y Z´ıtek, P. (2003). Quasipolynomial mapping based rootfinder for analysis of time delay systems. IFAC Proceedings Volumes, 36(19), 227–232. 4th IFAC
- Workshop on Time Delay Systems (TDS 2003), Rocquencourt, France, 8-10 September 2003.
- Wallinga, J. y Lipsitch, M. (2007). how generation intervals shape the relationship between growth rates and reproductive numbers. procedings of the royal society B, 274(6), 599 – 604.