Ramos-Fabian, Clemente A. | Instituto Tecnológico de Tijuana |
Pulido-Luna, Jesus Rogelio | Instituto Tecnológico de Tijuana |
Cazarez-Castro, Nohe R. | Instituto Tecnológico de Tijuana |
López Rentería, Jorge Antonio | Instituto Tecnológico de Tijuana |
https://doi.org/10.58571/CNCA.AMCA.2023.064
Resumen: This work presents a method for fractional order dynamical systems design that exhibits multi-scrolls by means of a fractional-order switching piecewise linear system. This method is based on the equilibrium points positioning and the region sizes in which the system switches. Numerical results of the proposed method are also presented and the multi-stability phenomenon is exhibited.
¿Cómo citar?
Ramos-Fabian, Clemente A.; Pulido-Luna, Jesus Rogelio; Cazarez-Castro, Nohe R.; López Rentería, Jorge Antonio. Multi-scroll Attractors and Multi-stability Generated Via Fractional-order Switching Linear Systems. Memorias del Congreso Nacional de Control Automático, pp. 479-484, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.064
Palabras clave
Control de Sistemas No Lineales; Control de Sistemas Lineales; Sistemas Caóticos
Referencias
- Cai, X. and Liu, F. (2007). Numerical simulation of the fractional-order control system. Journal of Applied Mathematics and Computing, 23, 229-241.
- Campos-Cant´on, E., Femat, R., and Chen, G. (2012). Attractors generated from switching unstable dissipative systems. Chaos, 22(3), 033121. doi:10.1063/1.4742338.
- Campos-Canton, E., Barajas-Ramirez, J.G., Solis-Perales, G., and Femat, R. (2010). Multiscroll attractors by switching systems. Chaos, 20, 013116. doi: 10.1063/1.3314278.
- Chen, L., Pan, W., Wang, K., Wu, E., Tenreiro Machado, J.A., and Lopes, A.M. (2017). Generation of a family of fractional order hyper-chaotic multi-scroll attractors. Chaos, Solitons & Fractals, 105, 244-255. doi: 10.1016/j.chaos.2017.10.032.
- Freeborn, T.J. (2013). A survey of fractional-order circuit models for biology and biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 416-424. doi:10.1109/JETCAS.2013.2265797.
- Hirsch, M.W., Smale, S., and Devaney, R.L. (2013). Differential Equations, Dynamical Systems, and An Introduction to Chaos. Academic Press, 3rd edition.
- Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications, volume 2, 963-968.
- Matignon, D. (1998). Stability properties for generalized fractional differential systems. ESAIM: Proc., 5, 145-158.
- Petr´as, I. (2011). Fractional–Order Nonlinear Systems: Modeling, Analysis and Simulation. Nonlinear Physical Science. Springer Berlin, Heidelberg, 1st edition. doi:10.1007/978-3-642-18101-6.
- Pulido-Luna, J.R., Lopez-Renteria, J.A., Cazarez-Castro, N.R., and Campos, E. (2021). A two-directional grid multiscroll hidden attractor based on piecewise linear system and its application in pseudorandom bit generator. Integration, 81, 34-42. doi:10.1016/j.vlsi.2021.04.011.
- Tavakoli-Kakhki, M., Haeri, M., and Saleh Tavazoei, M. (2010). Simple fractional order model structures and their applications in control system design. Elsevier European Journal of Control, 16(6), 680-694. doi:10.3166/ejc.16.680-694.
- Tlelo-Cuautle, E., Pano-Azucena, A.D., Guillen-Fernandez, O., and Silva-Juarez, A. (2019). Characterization and optimization of fractional-order chaotic systems. In Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications. Springer, Cham. doi:10.1007/978-3-030-31250-3 3.
- Yan, S., Wang, Q., Sun, X., and Song, Z. (2022). Multiscroll fractional-order chaotic system and finite-time synchronization. Physica Scripta, 97(2), 025203. doi:10.1088/1402-4896/ac4944.
- Yao, J., Wang, K., Huang, P., Chen, L., and Tenreiro Machado, J.A. (2020). Analysis and implementation of fractional-order chaotic system with standard components. Journal of Advanced Research, 25, 97-109. doi:10.1016/j.jare.2020.05.008.