| Víctor Hugo Mendoza-Vejar | Universidad Autónoma Metropolitana |
| Eliseo Hernández Martínez | Universidad Veracruzana |
| Eliceo Sosa | Instituto Mexicano del Petróleo |
| Hector Puebla | Universidad Autónoma Metropolitana |
https://doi.org/10.58571/CNCA.AMCA.2025.052
Resumen: Corrosion is a complex process involving many nonlinear corrosion mechanisms, such as birth, growth, and passivation of corrosion sites, leading to complex multiscale structures. Electrochemical noise (EN) methodologies have been used to characterize corrosion parameters and mechanisms. Measurements of EN consist of spontaneous fluctuations of corrosion potential and/or current generated by corrosion reaction. The resulting time series of current and potential fluctuations from base or nominal experimental parameters (e.g., concentration, pH, and temperature) have been studied using conventional and nonconventional tools. Fractal analysis has been applied for mechanism identification purposes. This work explores the effect of the corrosion agent concentration in the corrosion mechanism using the multivariate rescaled range fractal analysis in a case study of sodium chloride salt in construction steel AISI1018.

¿Cómo citar?
Mendoza-Vejar, V., Hernández Martínez, E., Sosa, E. & Puebla, H. (2025). Multivariate rescaled range analysis applied to electrochemical noise time series. Memorias del Congreso Nacional de Control Automático 2025, pp. 302-306. https://doi.org/10.58571/CNCA.AMCA.2025.052
Palabras clave
Monitoring; Performance assessment; Multivariate statistics; Signal-based methods; Electrochemical noise; Corrosion.
Referencias
- Alvarez-Ramirez, J., Alvarez, J., Rodriguez, E., and Fernandez-Anaya, G. (2008). Time-varying hurst exponent for US stock markets. Physica A: Statistical Mechanics and its Applications, 387 (24), 6159-6169.
- Amaya, M., Sosa, E., Romero, J. M., Álvarez-Ramírez, J., Meraz, M., and Puebla, H. (2004). Multifractality in an electrochemical noise signal by a biocorrosion system. Fractals, 12 (03), 347-354.
- ASTM G59-97 (2014). Standard test method for conducting potentiodynamic polarization resistance measurements. West Conshohocken: ASTM International. ASTM G-199 (2009). Standard guide for electrochemical noise measurement. West Conshohocken: ASTM International.
- Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M. (1997). Noise resistance applied to corrosion measurements: I. Theoretical analysis. Journal of the Electrochemical Society, 144 (1), 31.
- Cáceres, L., Vargas, T., and Herrera, L. (2009). Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions. Corrosion science, 51 (5), 971-978.
- Cottis, R. A. (2001). Interpretation of electrochemical noise data. Corrosion, 57 (3), 265-285.
- Greisiger, H., and Schauer, T. (2000). On the interpretation of the electrochemical noise data for coatings. Progress in Organic Coatings, 39 (1), 31-36.
- Harsimran, S., Santosh, K., & Rakesh, K. (2021). Overview of corrosion and its control: a critical review. Proc. Eng. Sci, 3 (1), 13-24.
- Horváth, Á., and Schiller, R. (2003). Rescaled range análisis of the corrosion potential noise. Corrosion Science, 45 (3), 597-609.
- Ibrahim, M. A., Abd El Rehim, S. S., and Hamza, M. M. (2009). Corrosion behavior of some austenitic stainless steels in chloride environments. Materials Chemistry and Physics, 115 (1), 80-85.
- Iverson, W. P. (1968). Transient voltage changes produced in corroding metals and alloys. Journal of the Electrochemical Society, 115 (6), 617.
- Kantelhardt, J. W. (2015). Fractal and multifractal time series. In Encyclopedia of complexity and systems science (pp. 1-37). Springer, Berlin, Heidelberg.
- Kelly, R. G., Scully, J. R., Shoesmith, D., and Buchheit, R. G. (2002). Electrochemical Techniques in Corrosion Science and Engineering. CRC Press. Koch, G. (2017). Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies (pp. 3-30). Elsevier.
- Korvin, G. (2023). Rescaled range analysis. In Encyclopedia of Mathematical Geosciences (pp. 1213-1218). Springer, Cham.
- Legat, A., and Govekar, E. (1994). Detection of corrosion by analysis of electrochemical noise. Fractals, 2 (02), 241-244.
- Meraz, M., Alvarez-Ramirez, J., and Rodriguez, E. (2022). Multivariate rescaled range analysis. Physica A: Statistical Mechanics and its Applications, 589, 126631.
- Moon, M., and Skerry, B. (1995). Interpretation of corrosión resistance properties of organic paint films from fractal analysis of electrochemical noise data. Journal of Coatings Technology, 67 (843).
- Obot, I. B., Onyeachu, I. B., Zeino, A., and Umoren, S. A. (2019). Electrochemical noise (EN) technique: review of recent practical applications to corrosión electrochemistry research. Journal of Adhesion Science and Technology, 33 (13), 1453-1496.
- Parangusan, H., Bhadra, J., and Al-Thani, N. (2021). A review of passivity breakdown on metal surfaces: influence of chloride-and sulfide-ion concentrations, temperature, and pH. Emergent Materials, 4 (5), 1187-1203.
- Ramírez-Platas, M., Morales-Cabrera, M. A., Rivera, V. M., Morales-Zarate, E., and Hernandez-Martinez, E. (2021). Fractal and multifractal analysis of electrochemical noise to corrosion evaluation in A36 steel and AISI 304 stainless steel exposed to MEA-CO2 aqueous solutions. Chaos, Solitons & Fractals, 145, 110802.
- Roberge, P. R., and Eng, P. (2008). Corrosion Engineering. New York, NY, USA, McGraw-Hill.
- Roberge, P. R., and Trethewey, K. R. (1995). The fractal dimension of corroded aluminium surfaces. Journal of Applied Electrochemistry, 25 (10), 962-966.
- Sanchez-Ortiz, W., Andrade-Gómez, C., Hernandez-Martinez, E., and Puebla, H. (2015). Multifractal Hurst analysis for identification of corrosion type in AISI 304 stainless steel. International Journal Electrochemical Science, 10, 1054-1064.
- Smulko, J. (2006). Methods of electrochemical noise análisis for investigation of corrosion processes. Fluctuation and Noise Letters, 6 (02), R1-R9.
- Tan, Y. (2009). Sensing localised corrosion by means of electrochemical noise detection and analysis. Sensors and Actuators B: Chemical, 139 (2), 688-698.
- Thompson, N. G., Yunovich, M., and Dunmire, D. (2007). Cost of corrosion and corrosion maintenance strategies. Corrosion Reviews, 25 (3-4), 247-262.
- Tyagai, V. A. (1971). Faradaic noise of complex electrochemical reactions. Electrochimica Acta, 16 (10), 1647-1654.
- Wang, S.Q., Zhang, D. K.,Wang, D. G.,Chen, K.,Xu, L. M., and Ge, S.R. (2013). Application of fractal dimension on electrochemical corrosion behavior of steel wire. International Journal Electrochemical Science, 8, 2932-2944.
- Xia, D. H., Song, S. Z., and Behnamian, Y. (2016). Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms. Corrosion Engineering, Science and Technology, 51 (7), 527-544.
- Yang, L. (Ed.). (2020). Techniques for Corrosion Monitoring. Woodhead Publishing.
- Zhang, J., Zhang, Z., Wang, J., Cheng, S., and Cao, C. (2001). Analysis and application of electrochemical noise I. Theory of electrochemical noise analysis. Journal-Chinese Society for Corrosion and Protection, 21 (5), 310-320.
