D. A. Tejeda-Ochoa | IT de Culiacán |
G. E. Peralta-Peñuñuri | IT de Culiacán |
V. A. Gonzalez-Huitrón | IT de Culiacán |
H. Rodriguez-Rangel | IT de Culiacán |
R. Baray-Arana | IT de Chihuahua |
A. E. Rodriguez-Mata | IT de Chihuahua |
https://doi.org/10.58571/CNCA.AMCA.2022.055
Resumen: On a NVIDIA Jetson Nano device, this study illustrates a unique and original usage of automated control and artificial intelligence algorithms for angular velocity estimates of a first-order manipulator device. A platform can be used as a position estimation platform using computer vision and three state estimation algorithms: sliding mode differentiator, high gain observer, and static filter. A hybrid system for process performance improvement is proposed using computer vision and three state estimation algorithms: sliding mode differentiator, high gain observer, and static filter. The results of numerical simulations are provided, as well as real-time judgments. The ITAE and IAE indices reveal that the sliding mode differentiator is much superior in angular velocity estimation for position signals utilizing artificial intelligence sensors.
¿Cómo citar?
Tejeda-Ochoa, D., Peralta-Peñuñuri, G., Gonzalez-Huitrón, V., Baray-Arana, R., Rodriguez-Rangel, H. & Rodriguez-Mata, A. A New System for Angular Velocity Estimation for a First-Order Manipulator Using Artificial Intelligence and Sliding Mode Differentiator. Memorias del Congreso Nacional de Control Automático, pp. 362-367, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.055
Palabras clave
Modelado e Identificación de Sistemas; Robótica y Mecatrónica; Redes Neuronales
Referencias
- Bradski, G., Kaehler, A., & Pisarevsky, V. (2005). Learningbased computer vision with intel's open-source computer vision library. Intel technology journal, 9(2).
- Celikovsky, S., Torres-Munoz, J., Rodriguez-Mata, A., & Dominguez-Bocanegra, A. R. (2015, October). An adaptive extension to high gain observer with application to wastewater monitoring. In 2015 12th international conference on electrical engineering, computing science and automatic control (cce) (pp. 1-6). IEEE.
- Cosenza, M. (2015). Mecánica Clásica. Universidad de los Andes (ULA). Facultad de Ciencias. Departamento de Física. Mérida-Venezuela (Publicación Electrónica), 133-141.
- Fernández Llorca, D., Hernández Martínez, A., & García Daza, I. (2021). Vision‐based vehicle speed estimation: A survey. IET Intelligent Transport Systems, 15(8), 987-1005.
- Khalil, H. K. (2002). Nonlinear systems third edition. Patience Hall, 115.
- Kouro, S., & Musalem, R. (2002). Control mediante lógica difusa. Técnicas Modernas en Automática, 1, 1-7.
- Labbadi, M., Boukal, Y., & Cherkaoui, M. (2020). Path following control of quadrotor UAV with continuous fractional-order super twisting sliding mode. Journal of Intelligent & Robotic Systems, 100(3), 1429-1451.
- Marzaki, M. H., Tajjudin, M., Rahiman, M. H. F., & Adnan, R. (2015, May). Performance of FOPI with error filter based on controllers performance criterion (ISE, IAE and ITAE). In 2015 10th Asian Control Conference (ASCC) (pp. 1-6). IEEE.
- Messner, B., Tilbury, D., Hill, R., & Taylor, J. D. (2017). Control Tutorials for Matlab and SIMULINK–Inverted Pendulum: System Modeling. Univ. of Michigan, Carnegie Mellon Univ., Univ. of Detroit Mercy.
- Nasir, A. N. K., Ismail, R. M. T. R., & Ahmad, M. A. (2010). Performance comparison between sliding mode control (SMC) and PD-PID controllers for a nonlinear inverted pendulum system. World Academy of Science, Engineering and Technology, 71, 400-405.
- Ooi, R. C. (2003). Balancing a two-wheeled autonomous robot. University of Western Australia, 3.
- Pérez-Ventura, U., & Fridman, L. (2019). Design of supertwisting control gains: A describing function-based methodology. Automatica, 99, 175-180.
- Rodríguez-Rangel, H., Morales-Rosales, L. A., Imperial-Rojo, R., Roman-Garay, M. A., Peralta-Peñuñuri, G. E., & Lobato- Báez, M. (2022). Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with YOLO. Applied Sciences, 12(6), 2907.
- Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation (Vol. 10). New York: Springer New York.
- Vidyasagar, M. (1994). Nonlinear Systems Analysis.