Franco, Hugo | Universidad Nacional Autónoma De México |
Schaum, Alexander | Christian Albrechts University Kiel |
Meurer, Thomas | Christian Albrechts University Kiel |
Alvarez, Jesus | Universidad Autónoma Metropolitana, Unidad Iztapalapa |
Resumen: In this work, the stabilization problem of a possible open-loop unstable steady-state for a class of semilinear parabolic partial differential equation models with an averaged measurement and homogeneously distributed control action is addressed. Following notions of passivity-based control for finite-dimensional systems, a feedback passive control is constructed. The combination of Lyapunov and modal techniques gives sufficient conditions to ensure the stability of the closed-loop system by characterizing the zero dynamics behavior in terms of the sensor location and the controller gain. For implementation purposes, an estimator with a pointwise innovation scheme is considered. The performance of the designed controller is shown by numerical simulations.
¿Cómo citar?
H. Franco-de los Reyes, A. Schaum, T. Meurer & J. Alvarez. Nonlinear Passive Control of a Class of Coupled Partial Differential Equation Models. Memorias del Congreso Nacional de Control Automático, pp. 477-482, 2019.
Palabras clave
Sistemas de Parámetros Distribuidos, Control Basado en pasividad, Control de Procesos
Referencias
- Aleksic, J., Kosti´c, V., and Zigic, M. (2014). Spectrum localizations for matrix operators on lp spaces. Applied Mathematics and Computation, 249, 541–553.
- Alonso, A.A., Banga, J.R., and Sanchez, I. (2000). Passive control design for distributed process systems: Theory and applications. AIChE Journal, 46(8), 1593–1606.
- Bondarko, V. and Fradkov, A. (2002). G-passification of infinite-dimensional linear systems. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., volume 3, 3396–3401. IEEE.
- Christofides, P.D. (2012). Nonlinear and robust control of PDE systems: Methods and applications to transportreaction processes. Springer Science & Business Media.
- Curtain, R.F. and Zwart, H. (2012). An introduction to infinite-dimensional linear systems theory, volume 21. Springer Science & Business Media.
- Dhooge, A., Govaerts, W., and Kuznetsov, Y.A. (2003). Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Transactions on Mathematical Software (TOMS), 29(2), 141–164.
- Doerfler, F., Johnsen, J.K., and Allgoewer, F. (2009). An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control, 19(9), 1413–1426.
- Franco-de los Reyes, H. and Alvarez, J. (2017). Saturated linear PI control of a class of exothermic tubular reactors. Proceedings of the National Conference on Automatic Control Mexico, 347–352.
- Franco-de los Reyes, H., Schaum, A., Meurer, T., and Alvarez, J. (2019a). Nonlinear output-feedbacl control of a class of semilinear parabolic pdes. Accepted for presentation at Conference on Decision and Control (CDC), Nice, Francia.
- Franco-de los Reyes, H., Schaum, A., Meurer, T., and Alvarez, J. (2019b). Passivity-based output-feedback control for a class of 1-d semilinear pde models. Proceedings of the IEEE International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico.
- Fridman, E. and Orlov, Y. (2009). An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems. Automatica, 45(9), 2060–2066.
- Karafyllis, I. and Krstic, M. (2019). Input-to-state stability for PDEs. Springer.
- Meurer, T. and Andrej, J. (2018). Flatness-based model predictive control of linear diffusion-convectionreaction processes. In 2018 IEEE Conference on Decision and Control (CDC), 527–532. IEEE.
- Nájera, I., Alvarez, J., and Baratti, R. (2015). Feedfor- ward output-feedback control for a class of exothermic tubular reactors. IFAC-PapersOnLine, 48(8), 1075– 1080.
- Ortega, R., Perez, J.A.L., Nicklasson, P.J., and SiraRamirez, H.J. (2013). Passivity-based control of EulerLagrange systems: mechanical, electrical and electromechanical applications. Springer Science & Business Media.
- Raymond, L.R. and Amundson, N.R. (1964). Some observations on tubular reactor stability. The Canadian Journal of Chemical Engineering, 42(4), 173–177.
- Ruszkowski, M., Garcia-Osorio, V., and Ydstie, B.E. (2005). Passivity based control of transport reaction systems. AIChE Journal, 51(12), 3147–3166.
- Schaum, A., Alvarez, J., Meurer, T., and Moreno, J. (2017). State-estimation for a class of tubular reactors using a pointwise innovation scheme. Journal of Process Control, 60, 104–114.
- Schaum, A. and Meurer, T. (2019). Dissipativity-based output-feedback control for a class of semilinear unstable heat equations. Proceedings of the IFAC conference on Nonlinear Control Systems, Vienna, Austria.
- Schaum, A., Moreno, J.A., Fridman, E., and Alvarez, J. (2014). Matrix inequality-based observer design for a class of distributed transport-reaction systems. International Journal of Robust and Nonlinear Control, 24(16), 2213–2230.
- Sira-Ramirez, H. and Angulo-Nunez, M.I. (1997). Passivity-based control of nonlinear chemical processes. International Journal of Control, 68(5), 971–996.
- Sontag, E.D. (1995). On the input-to-state stability property. European Journal of Control, 1 (1), 24–36.
- Wang, J.W. and Wu, H.N. (2014). Lyapunov-based design of locally collocated controllers for semi-linear parabolic pde systems. Journal of the Franklin Institute, 351(1), 429–441.