Vallejo Alarcón, Manuel Alejandro | CINVESTAV |
Velasco-Villa, Martin | CINVESTAV |
Castro-Linares, Rafael | CINVESTAV |
Resumen: In this paper, a trajectory-tracking prediction-based control strategy is presented for a quadrotor with input time-delays, using smooth-bounded error-correction actions. This is, a smooth-bounded backstepping-based control design is feed with prediction-based estimated states obtained using a full-state predictor; this scheme uses a quadrotor model reduced by an inner control loop also presented. The prediction-based control scheme is analyzed for stability and validated by numerical simulation results.
¿Cómo citar?
M.A. Vallejo-Alarcon, M. Velasco-Villa & R. Castro-Linares. Nonlinear Prediction-Based Smooth-Bounded Backstepping Control for a Quadrotor with Input Delay. Memorias del Congreso Nacional de Control Automático, pp. 665-670, 2019.
Palabras clave
Control de Sistemas No Lineales, Control Basado en pasividad, Robótica y Mecatrónica
Referencias
- Bellman, R. and Cooke, K.L. (1963). Differentialdifference equations. Technical Report R-374-PR, Rand Corporation, Santa Monica, CA.
- Bouabdallah, S. and Siegwart, R. (2005). Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2247– 2252. IEEE. doi:10.1109/ROBOT.2005.1570447.
- Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., and Knuth, D.E. (1996). On the lambert w function. Advances in Computational mathematics, 5(1), 329– 359. doi:10.1007/BF02124750.
- García-Carrillo, L.R., Dzul-López, A.E., Lozano, R., and Pégard, C. (2013). Quad Rotorcraft Control: VisionBased Hovering and Navigation, chapter 2, 32–34. Springer. doi:10.1007/978-1-4471-4399-4.
- Kharitonov, V.L. (2013). Time-delay systems: Lyapunov functionals and matrices. Control Engineering. Birkh¨auser, Boston. doi:10.1007/978-0-8176-8367-2.
- Lozano, R., Castillo, P., Garcia, P., and Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603–612. doi: 10.1016/j.automatica.2003.10.007.
- Luenberger, D. (1971). An introduction to observers. IEEE Transactions on Automatic Control, 16(6), 596– 602. doi:10.1109/TAC.1971.1099826.
- Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2520–2525. IEEE. doi: 10.1109/ICRA.2011.5980409.
- Niculescu, S.I. (2001). Delay effects on stability: a robust control approach. Springer-Verlag, London. doi: 10.1007/1-84628-553-4.
- Sanz, R., Garcia, P., Zhong, Q.C., and Albertos, P. (2017). Predictor-based control of a class of timedelay systems and its application to quadrotors. IEEE Transactions on Industrial Electronics, 64(1), 459–469. doi:10.1109/TIE.2016.2609378.
- Shinozaki, H. and Mori, T. (2006). Robust stability analysis of linear time-delay systems by lambert w function: Some extreme point results. Automatica, 42(10), 1791– 1799. doi:10.1016/j.automatica.2006.05.008.
- Tayebi, A. and McGilvray, S. (2006). Attitude stabilization of a vtol quadrotor aircraft. Control Systems Technology, IEEE Transactions on, 14(3), 562 – 571. doi:10.1109/TCST.2006.872519.
- Wang, X., Sun, C., Lin, X., and Yu, Y. (2018). Adaptive neural network control of a quadrotor with input delay. In 2018 Chinese Automation Congress (CAC), 4095– 4100. IEEE. doi:10.1109/CAC.2018.8623376.