Cruz-Zavala, Emmanuel | Universidad De Guadalajara |
Sanchez, Tonametl | INRIA-Lille Nord Europe |
Nuño, Emmanuel | Universidad De Guadalajara |
Moreno, Jaime A. | Universidad Nacional Autónoma De México |
Resumen: En este trabajo se modifican los controladores saturados y no saturados publicados por Bhat y Bernstein en 1998. La finalidad es obtener controladores más adecuados para las tareas de control. Adicionalmente, estos nuevos controladores se generalizan para obtener reguladores de tiempo finito para robots manipuladores. Las principales propiedades del sistema retroalimentado son verificadas por medio de funciones de Lyapunov.
¿Cómo citar?
Emmanuel Cruz-Zavala, , Tonametl Sanchez, Emmanuel Nuño & Jaime A. Moreno. Nuevas Familias de Controladores de Tiempo Finito para Sistemas de Segundo Orden SISO y MIMO. Memorias del Congreso Nacional de Control Automático, pp. 401-406, 2019.
Palabras clave
Control de Sistemas No Lineales, Control Basado en pasividad, Robótica y Mecatrónica
Referencias
- Andrieu, V., Praly, L., and Astolfi, A. (2008). Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim., 47(4), 1814– 1850.
- Bacciotti, A. and Rosier, L. (2005). Lyapunov functions and stability in control theory. Springer-Verlag, New York, 2nd edition.
- Bernuau, E., Perruquetti, W., Efimov, D., and Moulay, E. (2012). Finite-time output stabilization of the double integrator. In Proceedings of the IEEE Conf. Decision and Control, 5906–5911.
- Bernuau, E., Perruquetti, W., Efimov, D., and Moulay, E. (2015). Robust finite-time output feedback stabilisation of the double integrator. Int. J. Control, 88, 451–460.
- Bhat, S. and Bernstein, D. (1997). Finite-time stability of homogeneous systems. In Proc. Amer. Contr. Conf., 2513–2514. Albuquerque, NM.
- Bhat, S. and Bernstein, D. (1998). Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control, 43, 678–682.
- Bhat, S. and Bernstein, D. (2000). Finite-time stability of continuous autonomous systems. SIAM J. Control Optim., 38, 751–766.
- Bhat, S. and Bernstein, D. (2005). Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals, and Systems, 17(2), 101–127.
- Cruz-Zavala, E., Sanchez, T., Moreno, J.A., and Nuño, E. (2018). Strict Lyapunov functions for homogeneous finite-time second-order systems. In 2018 56th IEEE Conf. Decision and Control (CDC), 1530–1535. doi: 10.1109/CDC.2018.8619664.
- Haimo, V.T. (1986). Finite time controllers. SIAM J. Contr. Optim., 24, 760–77.
- Hong, Y., Jiang, Z.P., and Feng, G. (2010). Finite–time input–to–state stability and applications to finite–time control design. SIAM J. Control Optim., 48(7), 4395– 4418. doi:10.1137/070712043.
- Hong, Y., Xu, Y., and Huang, J. (2002). Finite-time control for robot manipulators. Syst. Control Lett., 46, 243–253.
- Kelly, R., Santibanez, V., and Loria, A. (2005). Control of Robot Manipulators in Joint Space. Springer-Verlag, London, U.K.
- Lopez-Ramirez, F., Polyakov, A., Efimov, D., and Perruquetti, W. (2018). Finite-time and fixedtime observer design: Implicit Lyapunov function approach. Automatica, 87, 52 – 60. doi: https://doi.org/10.1016/j.automatica.2017.09.007.
- Menard, T., Moulay, E., and Perruquetti, W. (2010). A Global High-Gain Finite-Time Observer. IEEE Trans. Autom. Control, 55(6), 1500–1506. doi: 10.1109/TAC.2010.2045698.
- Mercado-Uribe, A. and Moreno, J.A. (2017). Discontinuous integral control for systems in controller form. In Congreso Nacional de Control Automático 2017, 630– 635.
- Michel, A., Hou, L., and Liu, D. (2008). Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems. Systems & Control: Foundations & Applications. Birkhauser, Boston.
- Moulay, E. and Perruquetti, W. (2006). Finite-Time Stability and Stabilization: State of the Art, 23–41. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Orlov, Y. (2008). Finite time stability and robust control synthesis of uncertain switched systems. IEEE Trans. Autom. Contr., 43(4), 1253–1271.
- Orlov, Y. (2009). Discontinuos Systems: Lyapunov analysis and robust synthesis under uncertainty conditions. Springer.
- Polyakov, A., Orlov, Y., Oza, H., and Spurgeon, S. (2015). Robust finite-time stabilization and observation of a planar system revisited. In 2015 54th IEEE Conf. Decision and Control (CDC), 5689–5694. doi: 10.1109/CDC.2015.7403112.
- Sepulchre, R. and Aeyels, D. (1996). Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control. Signals Syst., 9, 34–58.
- Tarbouriech, S., Garcia, G., da Silva Jr., J.M.G., and Queinnec, I. (2011). Stability and Stabilization of Linear Systems with Saturating Actuators. SpringerVerlag, London. doi:10.1007/978-0-85729-941-3.
- Venkataraman, S. and Gulati, S. (1993). Terminal slider control of robot systems. J. of Intelligent and Robotic Systems, 5, 31–55.
- Zavala-Rio, A. and Fantoni, I. (2014). Global finitetime stability characterized through a local notion of homogeneity. IEEE Trans. Autom. Control, 59(2), 471– 477.