Flores Perez, Anahi | Universidad Nacional Autónoma de México |
Gonzalez-Olvera, Marcos A. | Universidad Autónoma de la Ciudad de México |
Chavez, Gustavo | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2024.014
Resumen: The emergence of the COVID-19 pandemic in December 2019, caused by the SARSCoV-2 virus, has prompted extensive analysis using mathematical models like SIR (Susceptible, Infected, Recovered) and SEIR (Susceptible, Exposed, Infected, Recovered) to comprehend the dynamics of the disease. Recent advancements in model refinement include the incorporation of time delays to account for incubation and recovery periods, as well as adaptations to encompass the transmission by asymptomatic individuals. However, the precise identification of parameters in these models remains a challenging task due to incomplete and non-uniform data.
This study delves into the utilization of numerical algorithms, specifically Particle Swarm Optimization and Genetic Algorithms, to optimize parameters and delay times in SIR models based on recent pandemic data. The performance of both algorithms is explored through the testing of parameter identification under varying levels of uncertainty in measures of infected patients. The results of this research aim to improve the understanding of the COVID-19 pandemic and contribute to the refinement of mathematical models for analyzing infectious disease dynamics.
¿Cómo citar?
Flores Perez, A., Gonzalez Olvera, M.A. & Chavez Peña, G. (2024). Numerical Exploration of the Parametric Identification and Delay Reconstruction Problem on Epidemiological Models Using Evolutionary Algorithms. Memorias del Congreso Nacional de Control Automático 2024, pp. 79-84. https://doi.org/10.58571/CNCA.AMCA.2024.014
Palabras clave
Epidemiological model
Referencias
- Arino, J., Brauer, F., van den Driessche, P., Watmough, J., and Wu, J. (2007). A final size relation for epidemic models. Mathematical Biosciences & Engineering, 4(2), 159–175.
- Chen, P.L., Lee, N.Y., Cia, C.T., Ko, W.C., and Hsueh, P.R. (2020a). A review of treatment of coronavirus disease 2019 (covid-19): Therapeutic repurposing and unmet clinical needs. Frontiers in pharmacology, 11, 584956.
- Chen, Y., Cheng, J., Jiang, Y., and Liu, K. (2020b). A time delay dynamical model for outbreak of 2019-ncov and the parameter identification. Journal of Inverse and Ill-posed Problems, 28(2), 243–250.
- CONAHCyT (2023). Covid-19 tablero méxico-conacyt-centrogeo-geoint-datalab. Available online:, https://datos.COVID-19.conacyt.mx/DownZCSV.
- De Natale, G., Ricciardi, V., De Luca, G., De Natale, D., Di Meglio, G., Ferragamo, A., Marchitelli, V., Piccolo, A., Scala, A., Somma, R., et al. (2020). The covid-19 infection in italy: a statistical study of an abnormally severe disease. Journal of clinical medicine, 9(5), 1564.
- Ebraheem, H.K., Alkhateeb, N., Badran, H., and Sultan, E. (2021). Delayed dynamics of sir model for covid-19. Open Journal of Modelling and Simulation, 9(2), 146–158.
- El-Mihoub, T.A., Hopgood, A.A., Nolle, L., and Battersby, A. (2006). Hybrid genetic algorithms: A review. Eng. Lett., 13(2), 124–137.
- Gallardo-Hernández, A.G., González-Olvera, M.A., Castellanos-Fuentes, M., Escobar, J., Revilla- Monsalve, C., Hernandez-Perez, A.L., and Leder, R. (2022). Minimally-invasive and efficient method to accurately fit the bergman minimal model to diabetes type 2. Cellular and Molecular Bioengineering, 15(3), 267–279.
- Guan, W.j., Ni, Z.y., Hu, Y., Liang, W.h., Ou, C.q., He, J.x., Liu, L., Shan, H., Lei, C.l., Hui, D.S., et al. (2020). Clinical characteristics of 2019 novel coronavirus infection in china. MedRxiv.
Jordan, E., Shin, D.E., Leekha, S., and Azarm, S. (2021). Optimization in the context of covid-19 prediction and control: A literature review. Ieee Access, 9, 130072–130093. - Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: Ga, pso, and de. Industrial Engineering and Management Systems, 11(3), 215–223.
- Kermack, W.O. and McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700–721.
- Lambora, A., Gupta, K., and Chopra, K. (2019). Genetic algorithm-a literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), 380–384. IEEE.
- Lange, A. (2016). Reconstruction of disease transmission rates: applications to measles, dengue, and influenza. Journal of theoretical biology, 400, 138–153.
- Magal, P. and Webb, G. (2018). The parameter identification problem for sir epidemic models: identifying unreported cases. Journal of mathematical biology, 77(6), 1629–1648.
- Michiels, W. and Niculescu, S.I. (2007). Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM.
Mummert, A. (2013). Studying the recovery procedure for the time-dependent transmission rate (s) in epidemic models. Journal of mathematical biology, 67, 483–507. - Qiu, Z., Sun, Y., He, X., Wei, J., Zhou, R., Bai, J., and Du, S. (2022). Application of genetic algorithm combined with improved seir model in predicting the epidemic trend of covid-19, china. Scientific Reports, 12(1), 8910.
- Song, M.P. and Gu, G.C. (2004). Research on particle swarm optimization: a review. In Proceedings of 2004 international conference on machine learning and cybernetics (IEEE Cat. No. 04EX826), volume 4, 2236–2241. IEEE.
- Vytla, V., Ramakuri, S.K., Peddi, A., Srinivas, K.K., and Ragav, N.N. (2021). Mathematical models for predicting covid-19 pandemic: a review. In Journal of Physics: Conference Series, volume 1797, 012009. IOP Publishing.
- Wang, D., Tan, D., and Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft computing, 22, 387–408.
- Wang, N., Fu, Y., Zhang, H., and Shi, H. (2020). An evaluation of mathematical models for the outbreak of covid-19. Precision Clinical Medicine, 3(2), 85–93.
- Waschburger, R. and Galvao, R.K.H. (2013). Time delay estimation in discrete-time state-space models. Signal Processing, 93(4), 904–912.