Xopo Rodríguez, Blanca Lucero | Centro Nacional de Investigación y Desarrollo Tecnológico |
Brizuela-Mendoza, Jorge Aurelio | Universidad de Guadalajara |
Astorga-Zaragoza, Carlos | Centro Nacional de Investigación y Desarrollo Tecnológico |
Reyes-Reyes, Juan | Centro Nacional de Investigación y Desarrollo Tecnológico |
Sorcia-Vázquez, Felipe D. | Centro Universitario de los Valles |
https://doi.org/10.58571/CNCA.AMCA.2024.054
Resumen: This paper presents the design of a control system whose objective is to stabilize a riderless bicycle. This is achieved from two torques applied to the angular positions of the vehicle. Also, the implementation of hardware in the loop is considered because only one of the states of the mathematical model is measured. The design of the control system addresses three important features: considering part of the real system (front frame or handlebars), a state observer and tacking into account these two parts, the solution of the roll angle variable is addressed with the corresponding differential equation (or hardware in the loop).
¿Cómo citar?
Xopo Rodríguez, B.L., Brizuela Mendoza, J.A., Astorga Zaragoza, C.M., Reyes Reyes, J. & Sorcia Vázquez, F.D.J. (2024). Observer-Based Control with Hardware-In-The-Loop for Stabilization of a Driverless Two-Wheeled Vehicle. Memorias del Congreso Nacional de Control Automático 2024, pp. 314-319. https://doi.org/10.58571/CNCA.AMCA.2024.054
Palabras clave
LTI System, LPV System, Observer, Hardware in the loop, Differential Equation
Referencias
- Baquero Suárez, M., Cortes-Romero, J., Arcos-Legarda, J., and Coral-Enriquez, H. (2017). Estabilización automática de una bicicleta sin conductor mediante el enfoque de control por rechazo activo de perturbaciones. Revista Iberoamericana de Automática e Informática Industrial, 15(1), 86–100.
- Bravo, D. and Rengifo, C. (2020). Estudio de la dinámica y control de una bicicleta robótica. Revista Mexicana de Física. E, Publicación de Enseñanza, Historia y Filosofía de la Sociedad Mexicana de Física, 17, 62. doi: 10.31349/RevMexFisE.17.62.
- Brizuela-Mendoza, J.A., Astorga-Zaragoza, C., Zavala Río, A., and Canales-Abarca, F. (2016). Control tolerante a fallas activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor. Revista Iberoamericana de Automática e Informática industrial, 13(2), 174–185.
- Cerone, V., Andreo, D., Larsson, M., and Regruto, D. (2010). Stabilization of a riderless bicycle [applications of control]. IEEE Control Systems Magazine, 30(5), 23–32.
- Meijaard, J.P., Papadopoulos, J.M., Ruina, A., and Schwab, A.L. (2007). Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: Mathematical, Physical and Engineering Sciences, 463(2084), 1955–1982.
- Ríos Ruiz, C. (2016). Estabilización y control de velocidad de una bicicleta mediante el enfoque Takagi-Sugeno. Tecnológico Nacional de México.
Schwab, A.L., Meijaard, J.P., and Papadopoulos, J.M. (2005). Benchmark results on the linearized equations of motion of an uncontrolled bicycle. Journal of Mechanical Science and Technology, 19, 292–304. - Wang, P., Yi, J., and Liu, T. (2019). Stability and control of a rider–bicycle system: Analysis and experiments. IEEE Transactions on Automation Science and Engineering, 17(1), 348–360.
- Whipple, F.J. (1899). The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120), 312–348.