Juarez, Andres | Universidad Nacional Autónoma De México |
Rojas, Michael | Universidad Nacional Autónoma De México |
Espinosa-Perez, Gerardo | Universidad Nacional Autónoma De México |
Arrieta, Mario | Universidad Nacional Autónoma De México |
Resumen: Low-frequency oscillations can provoke serious stability problems in power systems. Therefore the generation units are equipped with several auxiliary controls like the Automatic Voltage Regulators and the Power System Stabilizers. Unfortunately, the operation of these devices relies on the knowledge of some variables that usually are not available for measurement, leading to the necessity to include dynamic state estimators into the scheme. In this paper, a novel nonlinear observer for a Single Machine Infinite Bus system is proposed whose design is based on the well–known third order (Flux Decay) model for the synchronous generator. Although the main contribution is the establishment of the formal proof for its convergence (stability) properties, this result is complemented by showing the usefulness of the proposed scheme in a numerical evaluation, illustrating that a classical Power System Stabilizer fed with the estimated variables achieves the objective of damping low frequency oscillations for the aforementioned system.
¿Cómo citar?
Andrés Juarez, Michael Rojas, Gerardo Espinosa-Pérez & Mario Arrieta. Observer-Based Damping Low Frequency Oscillations for a SMIB System. Memorias del Congreso Nacional de Control Automático, pp. 151-156, 2019.
Palabras clave
Sistemas Eléctricos de Potencia, Control de Sistemas No Lineales, Otros Tópicos Afines
Referencias
- Gomes Jr, S., Guimarães, C., Martins, N., and Taranto, G. (2018). Damped nyquist plot for a pole placement design of power system stabilizers. Electric Power Systems Research, 158, 158–169.
- Guesmi, T., Farah, A., Abdallah, H.H., and Ouali, A. (2018). Robust design of multimachine power system stabilizers based on improved non-dominated sorting genetic algorithms. Electrical Engineering, 1–13.
- Ilic, M. and Liu, S. (2012). Hierarchical power systems control: its value in a changing industry. Springer Science & Business Media.
- Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., and Vittal, V. (2004). Definition and classification of power sys stability. IEEE Transactions on Power Systems, 19(2), 1387–1400.
- Larsen, E. and Swann, D. (1981). Applying power system stabilizers part i: general concepts. IEEE Transactions on Power Apparatus and systems, (6), 3017–3024.
- Lee, D. (1992). Ieee recommended practice for excitation system models for power system stability studies (ieee std 421.5-1992). Energy Development and Power Generating Committee of the Power Engineering Society, 95(96).
- Rivera, I.L.O., Vittal, V., Heydt, G.T., Fuerte-Esquivel, C.R., and Angeles-Camacho, C. (2018). A dynamic state estimator based control for power system damping. IEEE Transactions on Power Systems, 33(6), 6839– 6848.
- Sánchez Tello, F. (1988). Oscilaciones electromecánicas en sistemas de potencia. Ph.D. thesis, Universidad Autónoma de Nuevo León. Sauer, P.W. and Pai, M.A. (1998). Power system dynamics and stability, volume 101. Prentice hall Upper Saddle River, NJ.
- Wang, H. and Swift, F. (1997). A unified model for the analysis of facts devices in damping power system oscillations. i. single-machine infinite-bus power systems. IEEE Transactions on Power Delivery, 12(2), 941–946.
- Yu, Y.N. and Li, Q.H. (1990). Pole-placement power system stabilizers design of an unstable nine-machine system. IEEE transactions on power systems, 5(2), 353–358.
- Zolotas, A.C., Chaudhuri, B., Jaimoukha, I.M., and Korba, P. (2007). A study on lqg/ltr control for damping interarea oscillations in power systems. IEEE Transactions on Control Systems Technology, 15(1), 151–160.