Olivar Mejia, Arturo | Instituto Politecnico Nacional |
Del Muro Cuéllar, Basilio | Instituto Politecnico Nacional |
Marquez-Rubio, J. Francisco | Instituto Politecnico Nacional |
Duchén Sánchez, Gonzalo Isaac | Instituto Politecnico Nacional |
https://doi.org/10.58571/CNCA.AMCA.2023.045
Resumen: This paper considers the stability of continuous linear systems with time delay. In particular, systems with one unstable pole and n pairs of complex conjugate and/or real poles are analyzed. The proposed solution consists of using an estimated state observer with a closed-loop PD type controller to access to the internal variables of the system. A partition of the time delay is proposed in the observer to addmit the double of the maximum size that when a simple PD controller is considered. The necessary and sufficient conditions for the stability of the proposed control scheme are presented and an example is presented with simulations to demostrate the usefulness of the proposed control strategy.
¿Cómo citar?
Olivar Mejia, Arturo; Del Muro Cuéllar, Basilio; Marquez-Rubio, J. Francisco; Duchén Sánchez, Gonzalo Isaac. Observer-predictor based on a PD controller for high-order delayed systems with one unstable pole and n pairs of complex conjugate poles. Memorias del Congreso Nacional de Control Automático, pp. 400-405, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.045
Palabras clave
Control de Sistemas Lineales; Control Clásico
Referencias
- Ailon, A. and Gil, M.I. (2000). Stability analysis of a rigid robot with output-based controller and time delay. Systems and Control Letters, 40(1), 31-35. doi:10.1016/s0167-6911(99)00120-6.
- Arrieta, O., Vilanova, R., and Visioli, A. (2011). Proportional-Integral-Derivative Tuning for Servo/Regulation Control Operation for Unstable and Integrating Processes. Industrial and Engineering Chemistry Research, 50(6), 3327-3334. doi:10.1021/ie101012z.
- Barragan-Bonilla, L.A., Marquez-Rubio, J.F., del Muro-Cuellar, B., and Hern´andez-P´erez., M.A. (2020). Observer/predictor desing for unstable delayed linear systems with one pole at the origin. AMCA.
- Deng, W., Yao, J., Wang, Y., Yang, X., and Chen, J. (2021). Output feedback backstepping control of hydraulic actuators with valve dynamics compensation. Mechanical Systems and Signal Processing, 158, 107769. doi:10.1016/j.ymssp.2021.107769.
- Hernandez-Perez, M.A., del Muro-Cuéllar, B., and Velasco-Villa, M. (2015). PID for the stabilization of high-order unstable delayed systems with possible complex conjugate poles. Asia-Pacific Journal of Chemical Engineering, 10(5), 687-699. doi:10.1002/apj.1904.
- Hernández, R.R.L. (2009). Análisis del m´etodo MFSP (Múltiple Frames into Single Packet) para contrarrestar los retardos en los sistemasde Voip. Icmez, Y. and Can, M.S. (2023). Smith predictor controller design using the direct synthesis method for unstable second-order and time-delay systems. Processes, 11(3), 941. doi:https://doi.org/10.3390/pr11030941.
- Liu, T., Zhang, W., and Gu, D. (2005). Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delay. Journal of Process Control, 15(5), 559-572. doi:10.1016/j.jprocont.2004.10.004.
- Niculescu, S.I. (2001). Delay Effect on Stability: A Robust Control Approach.
- Sanz, R., Garc´ıa, P., and Albertos, P. (2018). A generalized smith predictor for unstable time-delay SISO systems. ISA Transactions, 72, 197-204. doi:10.1016/j.isatra.2017.09.020.
- Silva, G. J. Datta, A.B.S.P. (2005). PID Controllers for Time-Delay Systems.
- Smith, O.J.M. (1957). Close control of loops with dead time. Prog., 53.
- Wu, Li, and Xue (2019). A new PID controller design with constraints on relative delay margin for first-order plus dead-time systems. Processes, 7(10), 713. doi:10.3390/pr7100713.