Luis Alberto Barragan Bonilla | Universidad Veracruzana |
J. Francisco Marquez-Rubio | Universidad Veracruzana |
Basilio Del Muro Cuéllar | Universidad Veracruzana |
Miguel Angel Hernández Pérez | Universidad Veracruzana |
Resumen: One of the simplest techniques to control the unstable linear systems consists of estimating delayed signal before being delayed, to be used in the control stage. Using an observer/predictor may be convenient for this purpose when it does not has access to such an intermediate signal. In the present work, a control strategy based on an observer/predictor is proposed, which is an extension to previously carried out work. In this paper, the design of an observer/predictor for second-order systems, which contains a pole in the origin, an unstable pole and the output delay is proposed. The methodology to demonstrate the existence of the proposed observer/predictor and, the procedure for tuning parameters are presented.
¿Cómo citar?
Luis Alberto Barragan Bonilla, J. Francisco Marquez-Rubio, Basilio Del Muro Cuéllar & Miguel Angel Hernández Pérez. Observer/predictor desing for unstable delayed linear systems with one pole at the origin. Memorias del Congreso Nacional de Control Automático, pp. 1-6, 2020.
Palabras clave
delay, observer, stability, predictor, unstable systems
Referencias
- Desoer, C. (1965). General formulation of the nyquist criterion. IEEE Transactions on Circuit Theory, 12(2), 230–234.
- Kirtania, K. and Choudhury, M.S. (2011). A two-degreeof-freedom dead time compensator for stable processes with dead time. In 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), 385–390. IEEE.
- Lee, S.C., Wang, Q.G., and Xiang, C. (2010). Stabilization of all-pole unstable delay processes by simple controllers. Journal of Process Control, 20(2), 235–239.
- Marquez-Rubio, J.F, Del Muro-Cuéllar, B., Villa, M.V., and Ramírez, J.d.J.A. (2015). An improved sufficient ´ condition for stabilisation of unstable first-order processes by observer-state feedback. International Journal of Control, 88(2), 403–412.
- Marquez-Rubio, J.F, Pimentel-Medina, V., Del Muro Cuéllar, B., and Novella-Rodríguez, D. (2019). Obtención de los parámetros de un observador de estados propuesto para sistemas con retardo.
- Miranda, A., R., A., L., J., and T., E. (2008). Modelado de un reactor químico tipo cstr y evaluación del control predictivo aplicando matlab-simulink. Revista INGENIERIA UC, 15, 97–112.
- Normey-Rico, J.E. and Camacho, E.F. (2006). Predicción para control: Una panorámica del control de procesos con retardo. Revista Iberoamericana de Automática e Informática Industrial, 3(4), 5–25.
- Romero Galván, G. (1997). Análisis de estabilidad robusta para sistemas dinámicos con retardo. Ph.D. thesis, Universidad Autónoma de Nuevo León.
- Smith, O.J.M. (1957). Close control of loops with dead time. Chem. Eng. Prog.,, Vol. 53.
- Niculescu, S.I. (2001). Delay effects on stability: a robust control approach. Springer, Berlin.