Fernanda Ramos-García | Universidad Nacional Autónoma de México |
Jorge Alberto Estopier de la Cruz | Universidad Nacional Autónoma de México |
Gerardo Espinosa-Pérez | Universidad Nacional Autónoma de México |
https://doi.org/10.58571/CNCA.AMCA.2022.039
Resumen: In this work, the problem of additive perturbations is studied for a class of port Control Hamiltonian (PCH) systems. The considered class of Hamiltonian systems includes underactuated systems, which continue to be an important open study area. The starting point of the used methodology begins by considering that a previous tracking control has already made the equilibrium point of the error dynamic system asymptotically stable. The Integral Control (IC) reported in cite{ortega2012robust} and cite{ferguson2017integral} are implemented in the PCH class system so that it can reject the constant additive perturbations and conserves the Hamiltonian system structure. The results are compared and tested in a studied case with the system application of the Permanente Magnet Synchronous Motor (PMSM), and the MATLAB Simulink simulations obtained are exposed to compare the performance of both controls.
¿Cómo citar?
Ramos-García, F., Estopier de la Cruz, J. & Espinosa-Pérez, G. On Disturbance Rejection for a Class of Underactuated Hamiltonian Systems. Memorias del Congreso Nacional de Control Automático, pp. 187-192, 2022. https://doi.org/10.58571/CNCA.AMCA.2022.039
Palabras clave
Control Basado en pasividad; Control de Sistemas No Lineales
Referencias
- Dalsmo, M. and Van Der Schaft, A. (1998). On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM Journal on Control and Optimization, 37(1), 54–91.
- Donaire, A. and Junco, S. (2009). On the addition of integral action to port-controlled hamiltonian systems. Automatica, 45(8), 1910–1916.
- Ferguson, J., Donaire, A., and Middleton, R.H. (2017). Integral control of port-hamiltonian systems: Nonpassive outputs without coordinate transformation. IEEE Transactions on Automatic Control, 62(11), 5947–5953.
- Meisel, J. (1984). Principles of electromechanical-energy conversion. Krieger Publishing Company.
- Ortega, R. and Garcia-Canseco, E. (2004). Interconnection and damping assignment passivity-based control: A survey. European Journal of control, 10(5), 432–450.
- Ortega, R. and Romero, J.G. (2012). Robust integral control of port-hamiltonian systems: The case of onpassive outputs with unmatched disturbances. Systems & Control Letters, 61(1), 11–17.
- Ortega, R., Romero, J.G., Borja, P., and Donaire, A. (2021). Disturbance Rejection in Port-Hamiltonian Systems, 153–195. doi:10.1002/9781119694199.ch8.
- Ortega, R., Van Der Schaft, A., Castanos, F., and Astolfi, A. (2008). Control by interconnection and standard passivity-based control of port-hamiltonian systems. IEEE Transactions on Automatic control, 53(11), 2527–2542.
- Ramos-García, F., Espinosa-Pérez, G., and Avila-Becerril, S. (2021). On the trajectory tracking control of hamiltonian systems.
- Shah, D., Espinosa-Pérez, G., Ortega, R., and Hilairet, M. (2014). An asymptotically stable sensorless speed controller for non-salient permanent magnet synchronous motors. International Journal of Robust and Nonlinear Control, 24(4), 644–668.